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Abstract - The new Belgian CAr Stock MOdel, which is linked to the national transport demand model 
PLANET, is structured as follows: (a) The total desired car stock in each future year is a function of the 
country’s population and GDP per capita. (b) The probability that a car is scrapped is modelled as a 
function of its age and accumulated mileage. The desired car stock is then confronted with the remain-
ing car stock to determine total car purchases. (c) Total sales are allocated to individual emission classes, 
using the parameter values of a Stated Preference discrete choice model. The model is then calibrated 
in order to reflect the current market and policy context in Belgium (d) The results are mapped into an 
inventory that is aggregated according to the EURO emission class. (e) In order to represent that the 
non-price barriers to electrified cars will decrease over time, we have implemented an alternative ap-
proach where the perceived acquisition costs decrease over time. Alternatively, this approach can be 
used to explore what would be the required decrease in subjective costs to reach a given future market 
share. 

Abstract - Le nouveau modèle pour le parc de voitures belge CASMO (CAr Stock MOdel) – lié au mo-
dèle national de projection de la demande de transport PLANET – se structure de la manière suivante : 
(a) Le nombre total de voitures souhaité pour toute année future est une fonction de la population na-
tionale et du PIB par tête. (b) La probabilité de mise à la casse de chaque voiture est modélisée comme 
fonction de son âge et de son kilométrage accumulé. Le nombre de voitures souhaité est alors comparé 
au nombre de voitures restant dans le parc pour déterminer le nombre total d’achats de voitures.  
(c) Les achats totaux de voitures sont attribués aux différentes classes d’émissions au moyen des para-
mètres d’un modèle de choix discret, estimé sur la base d’une enquête de type « préférences déclarées ». 
Ensuite, le modèle est calibré pour refléter les conditions de marché et le contexte politique belges. 
(d) Les résultats sont intégrés dans un nouveau parc de voitures, agrégé selon les classes d’émissions 
EURO. (e) Pour tenir compte de la diminution progressive des barrières non financières à l’achat de 
voitures électrifiées, nous mettons en œuvre une approche alternative dans laquelle le coût d’acquisition 
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perçu décroît dans le temps. Cette approche peut également être exploitée pour déterminer les baisses 
requises de coût subjectif pour atteindre une certaine part de marché. 

Abstract - Het nieuwe wagenparkmodel voor België, het CAr Stock MOdel (CASMO), dat gekoppeld 
is aan het nationaal langetermijnmodel voor transport, PLANET, is als volgt gestructureerd:  
(a) Het gewenste wagenpark wordt berekend als een functie van de bevolking en het bbp per capita. 
(b) De waarschijnlijkheid dat een auto uit omloop wordt genomen wordt berekend als functie van de 
leeftijd van de auto en van de totale kilometerstand. Het gewenste wagenpark wordt dan vergeleken 
met het overblijvend wagenpark, en dat bepaalt de totale aankopen van nieuwe auto’s in een gegeven 
jaar. (c) Voor de opsplitsing van de totale verkopen per emissie-klasse, gebruiken we parameters van 
een discrete keuzemodel dat geschat werd aan de hand van een "uitgedrukte voorkeur" onderzoek. We 
kalibreren het model om de realiteit van de Belgische markt in onze referentieperiode weer te geven. 
(d) De output van het model wordt geïntegreerd in een nieuw wagenpark, dat wordt geaggregeerd in 
functie van de emissieklasse van de auto’s. (e) Er zijn meerdere elementen die nu een barrière vormen 
voor een groter marktaandeel voor elektrische en hybride auto’s; deze zullen in de toekomst echter 
waarschijnlijk grotendeels verdwijnen. Om rekening te houden met deze veranderingen hebben we een 
alternatieve benadering geïmplementeerd waarbij de gepercipieerde aankoopkosten dalen doorheen de 
tijd. Deze benadering kan ook gebruikt worden om te verkennen hoe ver de subjectieve kosten zouden 
moeten dalen om een gegeven marktaandeel te bereiken.  

Jel Classification - R00, R20, R40, C25, Q50 
Keywords - car stock modelling, discrete choice, alternative fuels, electric mobility, survival analysis 
and scrappage decisions, stated preferences 
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Executive summary 

Externalities of road transport such as greenhouse gas emissions and local pollution do not only depend 
on transport activity levels, but also on the composition of the vehicle stock. Indeed, emission factors 
and fuel consumption depend on the age structure of the vehicle stock, the shares of different power-
trains and the distribution of the vehicles’ weights. Therefore, in order to assess the environmental im-
pact of road transport, long-term transport demand models need to be linked with vehicle stock models.  

In such linked models, the interaction will go in both ways. On the one hand, the modal choices in the 
transport demand model are affected by the costs of car use, which also depend on the composition of 
the car stock. On the other hand, the activity levels predicted by the transport demand models influence 
the average costs of cars, and thus also the demand for specific car types.  

In the present paper, we focus on the new implementation of the Belgian CAr Stock MOdel (CASMO), 
which is linked to the national transport demand model, PLANET. 

Ideally, modelling the size and the composition of the car stock requires a fully dynamic model of the 
car market. Due to data constraints, this is currently not feasible for the Belgian context. Modelling the 
evolution of the Belgian car stock thus requires a pragmatic approach, with several ad hoc decisions.  

Our approach to the car stock model can be summarized as follows: 

– The total desired car stock is determined as a function of the country’s population and GDP per 
capita. Car ownership in Belgium is projected to grow from 5.76 million cars in 2018 to 7.04 million 
cars in 2040 – this is an increase with 22% and corresponds to 0.57 cars per capita by 2040. For com-
parison, over the same period, GDP is assumed to grow with 37% – this is consistent with a car stock 
that is approaching its saturation point.  

– In order to produce the emissions of the car fleet, cars are classified according to their emission fac-
tors, which depend on their age, fuel and size. The emission factors use a tank-to-wheel approach. 

– For each vintage in each car class we estimate the probability that a car is scrapped in the current 
year, as a function of its age and accumulated mileage (survival model with a loglogistic survival 
function). This determines the remaining car stock. 

– The desired car stock is then confronted with the remaining car stock to determine total car purchases 
in a given year. 

– For the allocation of the total sales to the respective emission classes, we use the parameter values of 
a Stated Preference discrete choice model estimated in The Netherlands. A direct application of the 
model to the Belgian market results in a poor predictive value, probably due to a combination of the 
following factors:  

– A still very low familiarity of users with electrified (electric and hybrid) cars. A detailed analy-
sis has shown that, in the current market context, the main barrier to the adoption of electrified 
cars is no longer their total cost of ownership, at least for realistic values of the expected eco-
nomic lifetime. Other elements appear to be crucial, some of which are easily quantifiable (such 
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as the expected autonomy of an electric car, the availability of a charging infrastructure or the 
diversity of the car models on offer), others less (such as consumers’ conservatism and range 
anxiety).  

– Company cars are an important component of the car stock, but the data do not allow to account 
for this in the demand model. Fleet managers do not just face different cost structures as private 
consumers – their choices are also governed by other criteria.  

– The “dieselgate” scandal and the policy measures that have been taken in response to it, have led 
to a very sharp decrease in the market share of diesel cars – higher than what we would expect a 
priori from the changes in car taxation only.  

– The Alternative Specific Constants (ASCs) of the model represent the part of an alternative’s utility 
that cannot be captured by the observed variables. Using non-linear least squares, we therefore cal-
ibrate the ASCs of the model to reflect the reality of the Belgian market in our reference period.  

– We then use the calibrated model for long term projections of the market shares.  

– Although the projected evolution of the cost and performance parameters tend to make electrified 
cars more attractive compared to their conventional counterparts, the projected market share for 
electric and hybrid cars remains below 2% in 2040. The most important driver behind this low sen-
sitivity of the market shares for alternative powertrains to changes in costs and performance are the 
high values of the estimated ASCs.  

The detailed vehicle type-size inventory is then mapped into a new inventory that is aggregated accord-
ing to the EURO emission class to which the cars belong. This is fed back to the PLANET model, and, 
combined with an estimate of annual travel, this results in an assessment of environmental impacts. 

Given that the calibration of the ASCs to the Belgian market leads to a much-improved match in the 
period used for the estimation but continues to drive the results until well in the future, we address 
whether this assumption of unvarying ASC is reasonable. 

For instance, in the case of electric and hybrid cars, it could be argued that the low familiarity of con-
sumers with these technologies leads to outdated perceptions regarding their total cost of ownership 
and range. Indeed, the spectacular improvements in terms of autonomy and costs of electric cars are a 
recent, and largely unanticipated, phenomenon. Outdated perceptions are likely to be corrected through 
actual experience and word-of-mouth effects (or “neighbour” effects). Such word-of-mouth effects are 
typically characterised by positive feedback loops. 

Other elements are also likely to improve over time such as: the low density (or the perception of a low 
density) of the recharging infrastructure, especially of fast-chargers; the lack of diversity in the models 
that are available; long delays in the delivery of orders…  

In order to represent those changes, we have implemented an alternative approach where the perceived 
acquisition costs decrease over time according to a logistic function. This reflects the typical dynamics 
of adopting new technologies: first imperceptibly, until a take-off point is reached, after which adoption 
will increase rapidly, until it converges to a new plateau when all learning effects have levelled out.  
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Assuming inflection point for hybrid cars around 2020 and for electric cars around 2030, we obtain much 
higher market shares. We have also found that, under this assumption, the market shares are much 
more sensitive to changes in the cost parameters. This approach with evolving subjective costs can be 
used, either to enlighten a debate between different experts, or to better understand the assumptions 
underlying existing alternative economic models.   

Our work has also identified several data needs. In particular, the survival model would be more accu-
rate if there were reliable and representative data on the accumulated mileages of individual cars and 
on the dates when they are retired from circulation in Belgium. 
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Synthèse 

Les externalités du transport routier telles que les émissions de gaz à effet de serre ou de polluants 
locaux, dépendent non seulement du volume des flux de transport, mais également de la composition 
du parc de voitures. En effet, les facteurs d’émission et la consommation de carburants dépendent de la 
structure par âge du parc de voitures, des parts dans celui-ci des différents types de motorisations, et 
de la distribution de la masse des voitures. Pour évaluer les impacts environnementaux du transport 
routier, les modèles de projection à long terme de la demande de transport doivent donc être couplés à 
des modèles décrivant l’évolution du parc de voitures. 

Les interactions entre modèles couplés de la sorte vont dans les deux directions. D’une part, les choix 
modaux au sein du modèle de demande dépendent du coût total d’usage de la voiture, qui lui-même 
dépend de la composition du parc de voitures. D’autre part, la demande de transport en voiture projetée 
influence le coût moyen des voitures, et donc la demande pour des types spécifiques de voiture. 

Le présent Working Paper se focalise sur la mise en œuvre d’un nouveau modèle de parc de voitures 
pour la Belgique, CASMO (Car Stock Model), qui est conçu pour être couplé au modèle de projection 
de la demande de transport PLANET. 

Dans l’idéal, la modélisation de la taille et de la composition du parc de voitures nécessiterait un modèle 
dynamique complet, tenant compte de toutes les décisions des agents ayant une influence sur ce parc. 
Du fait de l’indisponibilité d’une partie des données nécessaires à un tel exercice aujourd’hui en Bel-
gique, la modélisation du parc de voitures belge requiert une approche pragmatique impliquant des 
hypothèses ad hoc.  

Notre approche de modélisation peut se résumer de la sorte : 

– La taille totale du parc de voiture désiré est déterminée à l’aide d’une fonction de la population du 
pays et du PIB par habitant. Le nombre de voiture en Belgique devrait évoluer de 5,76 millions en 
2018 à 7,04 millions en 2040, soit une croissance de 22 %. Ceci correspond à un taux de possession de 
0,57 voiture par habitant en 2040. À titre de comparaison, le PIB belge devrait croitre de 37 % sur la 
même période. Ces éléments sont cohérents avec l’idée d’un parc de voitures s’approchant de son 
volume de saturation.  

– Pour pouvoir évaluer les émissions totales du parc de voitures, celui-ci est segmenté en fonction de 
facteurs d’émissions dépendants de l’âge, du carburant, et de la taille des voitures. 

– Pour chaque cohorte de voitures, dans chaque classe d’émission, nous estimons la probabilité qu’une 
voiture soit mise à la casse pour l’année en cours comme fonction de son âge et de son kilométrage 
accumulé, à l’aide d’un modèle de survie loglogistique. Ceci détermine le parc de voitures restant en 
service. 

– Le parc de voitures désiré est alors comparé au parc restant en service, pour déterminer le total des 
achats de voitures nécessaires une année donnée. 
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– L’allocation des achats totaux de voitures entre les différentes classes d’émissions se fait à l’aide d’un 
modèle de choix discret estimé pour les Pays-Bas au départ d’une enquête de type “Préférences Dé-
clarées”. L’application directe de ce modèle présente une capacité prédictive assez faible pour le 
marché Belge, probablement du fait des facteurs suivants : 

– Les voitures électrifiés (voitures électriques et hybrides) sont encore peu familières pour les uti-
lisateurs belges. Une analyse détaillée démontre que, dans le contexte actuel, le principal frein à 
l’adoption de ces technologies n’est plus le coût total d’usage du véhicule électrifié – en tout cas 
lorsque l’on considère des durées de vie économiques réalistes. D’autres éléments jouent un rôle 
déterminant, certains étant aisément quantifiables (comme l’autonomie attendue d’une voiture 
électrique, la disponibilité d’infrastructures de recharge, ou la diversité des modèles électriques 
offerts) et d’autres moins (comme le conservatisme des utilisateurs, ou leur « range anxiety »).    

– Les voitures de société constituent une composante importante et spécifique du parc de voitures, 
mais les données ne permettent pas de les distinguer dans les modèles économiques utilisés. Les 
gestionnaires de flotte de voitures fondent en effet leur choix sur un ensemble de critères diffé-
rents des utilisateurs privés, et sont confrontés à des structures de coût différentes. 

– Le “dieselgate” et les mesures politiques prises en réponse à son retentissement important ont 
induit une forte baisse de la part de marché des voitures diesel. Cette baisse dépasse ce qui était 
prévisible a priori du fait de la seule modification de la fiscalité automobile. 

– Les Constantes Spécifiques aux Alternatives représentent la part de l’utilité d’une alternative qui ne 
peut être captée par les variables explicatives observées. Nous procédons dès lors à leur recalibration 
pour refléter au mieux l’état du marché automobile belge sur notre période de référence, ce au moyen 
d’une équation aux moindres carrés non-linéaires.  

– Le modèle de choix discret recalibré est utilisé pour les projections à long terme des parts de marché.  

– L’évolution projetée des coûts et des prestations des voitures électrifiés rendent ceux-ci de plus en 
plus attractifs en comparaison des voitures conventionnels. Malgré cela, la part de marché projetée 
pour ces voitures en 2040 reste sous les 2 %. Cette faible sensibilité des parts de marché des motori-
sations alternatives aux évolutions des coûts et des performances trouve sa cause essentielle dans les 
valeurs élevées des constantes spécifiques aux alternatives estimées pour la Belgique  

Les résultats de la modélisation des achats sont ensuite intégrés dans une nouvelle version du parc de 
voitures, agrégé selon les classes d’émissions EURO. Cette nouvelle version du parc permet une mise à 
jour des coûts moyens du transport en voiture au sein du modèle PLANET, qui en retour fournit une 
projection du nombre de kilomètres parcourus annuellement en voiture. La combinaison de la compo-
sition du parc et des distances parcourues rend possible l’estimation des impacts environnementaux de 
l’usage de la voiture. 

La calibration des constantes spécifiques aux alternatives sur les données belges produit un ajustement 
de bien meilleure qualité pour la période observée. Ces valeurs calibrées ont cependant une influence 
très importante sur les parts de marché modélisées pour l’ensemble de la projection, jusqu’en 2040. Il 
est ainsi légitime de remettre en question l’hypothèse de constantes spécifiques inchangées sur toute la 
période.    
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Ainsi, dans le cas des voitures électriques, on peut raisonnablement penser que la manque d’expérience 
de ce type de technologie implique chez les consommateurs des perceptions dépassées en matière de 
coût total et d’autonomie. En effet, les améliorations spectaculaires des prestations et des coûts de ces 
voitures sont un phénomène récent et, dans une large mesure, non anticipé. De telles perceptions dé-
passées ont de fortes chances d’être revues sous l’effet de l’expérience accumulée et du bouche-à-oreille. 
Les effets de bouche-à-oreille sont en général caractérisés par des phénomènes de renforcement positif.  

D’autres aspects liés à cette défiance sont amenés à se résorber avec le temps, tels que : la faible densité 
(ou la perception d’une faible densité) de l’infrastructure de recharge, particulièrement des chargeurs 
rapides ; le manque de diversité des modèles électrifiés disponibles ; les délais de livraison importants 
pour ce type de voitures… 

Pour tenir compte de ces changements, nous mettons en œuvre une approche alternative dans laquelle 
les coûts d’acquisition perçus décroissent dans le temps selon une fonction logistique. Ceci reflète la 
dynamique typique dans les processus d’adoption de nouvelles technologies : le phénomène commence 
de manière imperceptible, jusqu’à ce qu’un point critique soit atteint. Après celui-ci, le taux d’adoption 
augmente rapidement, jusqu’à sa convergence vers un nouveau plateau lorsque les effets d’apprentis-
sage disparaissent. 

En supposant que le point d’inflexion de ce processus d’apprentissage se situe aux alentours de 2020 
pour les voitures hybrides, et de 2030 pour les voitures électriques, nous obtenons des parts de marché 
bien plus élevées en 2040. Nous observons également que, sous ces hypothèses d’évolution des coûts 
subjectifs, les parts de marché sont beaucoup plus sensibles à des changements dans les paramètres de 
coûts. Cette approche peut être utilisée soit pour éclairer un débat entre différents experts, soit pour 
mieux comprendre les hypothèses sous-tendant différentes alternatives de modélisation économique.  

Ce travail nous a permis également d’identifier plusieurs manques dans les données disponibles. En 
particulier, le modèle de survie gagnerait en précision si des kilométrages individuels ainsi que des 
dates de mise au rebut fiables étaient disponibles pour les voitures en Belgique. 
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Synthese 

Externe kosten van wegtransport zoals de uitstoot van broeikasgassen en lokale vervuiling hangen niet 
alleen af van de transportactiviteit, maar ook van de samenstelling van het wagenpark. Inderdaad, de 
emissiefactoren en het brandstofverbruik hangen af van de leeftijdsstructuur van de vloot, van de aan-
delen van de verschillende aandrijftechnologieën en van het gewicht van de voertuigen. Modellen van 
de evolutie van de transportvraag op lange termijn dienen daarom gekoppeld te worden met modellen 
van het wagenpark indien men ze wenst te gebruiken voor het schatten van de milieu impact van weg-
transport. 

In dergelijke gekoppelde modellen gaat de interactie in beide richtingen. Enerzijds worden de modale 
keuzes in het transportvraagmodel beïnvloed door de kosten van autogebruik, en deze hangen af van 
de samenstelling van het wagenpark. Anderzijds beïnvloedt de transportvraag de gemiddelde kost van 
auto’s, en dus ook de vraag naar specifieke types auto’s.  

In deze paper gaan we dieper in op het nieuwe wagenparkmodel voor België, het CAr Stock MOdel 
(CASMO), dat gekoppeld is aan het nationaal langetermijnmodel voor transport, PLANET.    

Ideaal gesproken zouden we moeten beschikken over een geïntegreerd model van alle beslissingen die 
de grootte en de samenstelling van het wagenpark bepalen. Met de gegevens die momenteel beschik-
baar zijn, is dit echter niet mogelijk voor België. Het modelleren van de evolutie van het wagenpark in 
België vereist dus een pragmatische aanpak met een paar ad hoc aannames.   

Onze benadering kan als volgt worden samengevat:  

– Het gewenste wagenpark wordt berekend als een functie van de bevolking en het bbp per capita. 
We projecteren een toename van het aantal auto’s in België van 5,76 miljoen in 2018 tot 7,04 miljoen 
in 2040 – dit is een toename met 22 % en komt overeen met 0,57 auto’s per capita in 2040. Ter verge-
lijking: we veronderstellen dat het bbp over dezelfde periode groeit met 37 %. Dit komt dus overeen 
met een wagenpark dat zijn verzadigingspunt nadert.  

– Om de uitstoot van het wagenpark te berekenen, worden auto’s geklasseerd in functie van hun emis-
siefactoren, die afhangen van hun leeftijd, brandstof en grootte. Deze emissiefactoren volgen een 
tank-tot-wiel benadering.  

– Voor elke jaargang en voor elke emissieklasse berekenen we de waarschijnlijkheid dat een auto uit 
omloop wordt genomen in het lopende jaar, in functie van de leeftijd van de auto en van de totale 
kilometerstand (aan de hand van een loglogistieke overlevingsfunctie). Dit bepaalt het overblijvend 
wagenpark.  

– Het gewenste wagenpark wordt dan vergeleken met het overblijvend wagenpark, en dat bepaalt de 
totale aankopen van nieuwe auto’s in een gegeven jaar.  

– Voor de opsplitsing van de totale verkopen in functie van de respectievelijke emissie-klasse, gebrui-
ken we parameters van een discrete keuzemodel dat geschat werd aan de hand van een "uitgedrukte 
voorkeur" onderzoek in Nederland. Een rechtstreekse toepassing van dit model in een Belgische 
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context bleek een lage voorspellende waarde te hebben, waarschijnlijk door een combinatie van vol-
gende factoren:  

– Gebruikers zijn nog altijd weinig vertrouwd met elektrische en hybride auto’s. Een gedetailleerde 
analyse heeft aangetoond dat, in de huidige context, de totale eigendomskost van deze auto’s niet 
langer de grootste hinderpaal vormt voor een groter marktaandeel (tenminste niet voor realisti-
sche waarden van hun verwachte economische levensduur). Andere elementen zijn cruciaal, 
waarvan sommigen gemakkelijk kunnen worden gekwantificeerd (zoals de autonomie van een 
elektrische auto, de beschikbaarheid van een laadinfrastructuur of de diversiteit van het aanbod), 
terwijl dat bij anderen niet zo evident is (zoals het conservatisme van de gebruikers en hun “range 
anxiety”).  

– Bedrijfswagens hebben een belangrijk aandeel in het wagenpark, maar omwille van beperkingen 
in de gegevens waarover we beschikken, kunnen we dit niet weergeven in het vraagmodel. Vloot-
managers zullen echter andere keuzes maken dan privé consumenten, niet alleen omdat de kos-
ten voor hen verschillen, maar ook omdat ze waarschijnlijk andere criteria laten meespelen.  

– Als een gevolg van het “dieselgate” schandaal en de beleidsmaatregelen die genomen zijn als 
reactie daarop, heeft er een zeer scherpe daling plaatsgevonden in het marktaandeel van diesel-
auto’s – meer dan wat we zouden verwacht hebben op basis van de veranderingen in het fiscaal 
regime alleen.  

– De Alternatief-Specifieke Constanten (ASCs) meten het deel van het nut van een bepaalde type auto 
dat niet kan worden gemeten aan de hand van waargenomen variabelen.  We hebben daarom ge-
bruik gemaakt van de niet-lineaire methode van de kleinste kwadraten om de ASCs van het model 
te herkalibreren zodat ze de realiteit van de Belgische markt in onze referentieperiode weergeven.  

– We hebben daarna voor de projecties op lange termijn van de marktaandelen gebruik gemaakt van 
de nieuw gekalibreerde versie van het model.  

– Door de verwachte evolutie van de kost- en prestatieparameters van de elektrische en hybride auto’s 
worden ze doorheen de tijd steeds aantrekkelijker in vergelijking met de “conventionele” tegenhan-
gers. Nochtans blijft het geprojecteerd marktaandeel voor elektrische en hybride auto’s in 2040 onder 
de 2 %. De belangrijkste factor die verklaart waarom de marktaandelen weinig reageren op veran-
deringen in de kosten en prestaties zijn de hoge waardes van de geschatte ASCs.  

De output van het model wordt dan geïntegreerd in een nieuw wagenpark, dat wordt geaggregeerd in 
functie van de EURO-emissieklasse van de auto’s. Dit wordt dan teruggekoppeld naar het PLANET-
model, en, in combinatie van een schatting van de afstanden die jaarlijks worden afgelegd, leidt dit tot 
een schatting van de milieu-impact.  

Het herkalibreren van de ASCs in functie van de Belgische marktgegevens leidt enerzijds tot een veel 
betere overeenstemming met de situatie in de periode die geobserveerd wordt voor het schatten van 
het model. Anderzijds heeft dit een buitensporig grote invloed op de modelresultaten in de verre toe-
komst. We dienen ons bijgevolg de vraag te stellen of het wel redelijk is om er van uit te gaan dat deze 
ASCs in de toekomst ongewijzigd zullen blijven.  



  WORKING PAPER 1-19 

9 

Bijvoorbeeld, in het geval van elektrische en hybride auto’s, zou men kunnen betogen dat het gebrek 
aan gebruikservaring met deze technologieën leidt tot voorbijgestreefde percepties met betrekking tot 
hun totale eigendomskosten en autonomie. De spectaculaire verbetering van de autonomie en de kosten 
van elektrische voertuigen zijn bijvoorbeeld een recent, en grotendeels onverwacht, fenomeen. Het is 
echter aannemelijk dat voorbijgestreefde percepties worden bijgestuurd als het gevolg van concrete ge-
bruikservaringen en door mond-aan-mond getuigenissen. Dergelijke effecten worden meestal geken-
merkt door positieve feedback loops.  

Ook andere elementen zullen doorheen de tijd waarschijnlijk verbeteren: de lage dichtheid van het aan-
bod aan oplaadinfrastructuur (of de perceptie dat er een lage dichtheid is), zeker van snelladers; het 
gebrek aan diversiteit in het aanbod; de vertragingen in de leveringen van de auto’s…  

Om rekening te kunnen houden met deze veranderingen hebben we een alternatieve benadering geïm-
plementeerd waarbij de gepercipieerde aankoopkosten dalen doorheen de tijd. We gaan ervan uit dat 
deze daling een logistische functie volgt. Deze geeft inderdaad weer dat de marktaandelen van nieuwe 
technologieën eerst onmerkbaar traag toenemen, tot wanneer een keerpunt wordt bereikt waarna het 
marktaandeel zeer snel toeneemt, waarna het convergeert naar een nieuw plateau nadat alle leereffecten 
zijn uitgespeeld.  

Indien we ervan uitgaan dat dit keerpunt voor hybride auto’s wordt bereikt rond 2020, en voor elektri-
sche auto’s rond 2030, dan zien we dat dit inderdaad leidt tot veel hogere marktaandelen voor deze 
aandrijftechnologieën. We hebben ook vastgesteld dat, onder deze aannames, de marktaandelen veel 
gevoeliger zijn voor veranderingen in de kostenparameters.  

Deze benadering met variabele subjectieve kosten kan gebruikt worden om het debat tussen verschil-
lende experts te verhelderen, of om meer inzicht te verwerven in de hypothesen die aan de basis liggen 
van bestaande alternatieve economische modellen.  

Ons werk heeft ook geleid tot de identificatie van lacunes in de data. Het overlevingsmodel zou bijvoor-
beeld veel accurater zijn indien we zouden kunnen beschikken over betrouwbare en representatieve 
data met betrekking tot de totale kilometerstand van individuele auto’s, alsook van de datum waarop 
ze in Belgium uit omloop worden genomen.  
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1. Introduction 

Externalities of road transport such as greenhouse gas emissions and local pollution do not only depend 
on transport activity levels, but also on the composition of the vehicle stock. Indeed, emission factors 
and fuel consumption depend on the age structure of the vehicle stock, the shares of different power-
trains and the distribution of the vehicles’ weights. Therefore, in order to assess the environmental im-
pact of road transport, long-term transport demand models1 need to be linked with vehicle stock mod-
els.  

In such linked models, the interaction will go in both ways. On the one hand, the modal choices in the 
transport demand model are affected by the costs of car use, which also depend on the composition of 
the car stock. On the other hand, the activity levels predicted by the transport demand models influence 
the average costs of cars, and thus also the demand for specific car types.  

In Franckx (2017), we had addressed the key methodological issues raised by car stock modelling, in 
particular in the light of emerging technologies and business models. We refer to this paper for a de-
tailed literature study of car stock modelling. 

In the present paper, we focus on the new implementation of the Belgian CAr Stock MOdel (CASMO), 
which is linked to the PLANET model. 

At the household level, the size and the composition of a car stock are the result of numerous interre-
lated variables, such as the annual distances that the household expects to travel; the substitutes to pri-
vate car travel that are available to the household; and the cost and performance parameters of the cars 
that are available on the market. 

The decision on how many cars to hold, when to replace existing cars and what type of cars to buy are 
further complicated by other factors. 

Firstly, a household’s expected annual mileage and the availability of alternative modes are not fully 
exogenous, but follow from decisions made by the household, such as its place of residence, employ-
ment and schools on the one hand and the size of the household on the other hand. 

Secondly, some car types are characterised by high acquisition costs and relatively low operating costs, 
while it is the other way around for other car types. The expected annual mileage, and the typical profile 
of individual trips, will thus affect the optimal car type for a given household. Until recently, this trade-
off was the decisive factor in the choice between a diesel and a gasoline car, but, with electric cars, new 
criteria (such as the vehicle’s range and the availability of a recharging infrastructure) become relevant. 

Thirdly, if operating costs change unexpectedly during a vehicle’s lifetime (for instance, due to fluctu-
ating fuel prices or to changes in the tax regime), a household’s effective travel may deviate from its 
planned travel when it first purchased the vehicle. 

                                                           
1  Such as the Belgian transport demand model PLANET - see Desmet et al. 2008 and Mayeres et al. 2010. 
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Fourthly, the decision to scrap a vehicle depends on parameters such as the expected future costs of 
keeping the vehicle (for instance, due to increased maintenance costs), the current price of new cars and 
the current car’s expected value on the second-hand market. In the past, one could assume that these 
elements were mainly affected by a vehicle’s type and age. However, in shared mobility modes, annual 
usage is much higher than for privately owned and used cars and accumulated mileage can also be 
expected to affect the scrappage decision. If shared mobility gains significant market shares in the com-
ing decades, this could significantly affect the composition of the car stock. 

Ideally, modelling the size and the composition of the car stock thus requires a fully dynamic model of 
the car market. There are some recent examples of papers that go a long way in this direction – see for 
instance Gillingham et al. (2015) and Yamamoto et al. (2004). 

However, due to data constraints, this is currently not feasible for the Belgian context. Modelling the 
evolution of the Belgian car stock thus requires a pragmatic approach, with several ad hoc decisions. In 
what follows, we describe the new approach we have taken and we illustrate the methodology with 
some results. We also discuss some limitations of this new approach and the potential for future im-
provement. 

The paper is structured as follows. The structure of the model is summarized in Section 2, followed by 
a detailed description of the data we have used in Section 3. Section 4 describes the three components 
model in detail: the demand model (Section 4.1), the survival model (Section 4.2) and the allocation 
model (Section 4.3). The resulting long-term projections are presented in Section 5. Section 6 discusses 
possible improvements to the central model and Section 7 concludes.       
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2. General structure of the model 

The approach to the car stock model can be summarized as follows: 

– The total desired car stock is determined by a country’s population and GDP per capita. The relation 
between these variables is based on findings from the international literature. 

– For each vintage in each car class2 , we estimate the probability that a car is scrapped in the current 
year, as a function of its age and accumulated mileage (survival model). This determines the remain-
ing car stock. 

– The desired car stock is then confronted with the remaining car stock to determine total car purchases 
in a given year. 

– A calibrated multinomial logit model (MNL) then splits these new purchases according to the dif-
ferent car classes. 

The detailed vehicle type-size inventory is then mapped into a new inventory that is aggregated accord-
ing to the EURO emission class to which the cars belong. This is fed back to the PLANET model, and, 
combined with an estimate of annual mileage, this results in an assessment of environmental impacts. 

Before proceeding with a more detailed explanation of each step, we give an overview of our main data 
sources. 

                                                           
2  Cars are grouped according to their COPERT emission class, which is determined by fuel and size. COPERT is a computer 

simulation programme used for the calculation of air pollutant emissions from road transport, whose technical development 
has been financed by the European Environment Agency (EEA), in the framework of the activities of the European Topic 
Centre on Air and Climate Change. It is used as an input in official annual national inventories (see Emissia 2018). 
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3. Data requirements and hypotheses 

3.1. The COPERT classification 

One of the key outputs of the PLANET model is an assessment of the environmental impacts of 
transport demand. It covers the following pollutants: NOx, PM2.5, CO2, non-methane volatile organic 
components (NMVOC) and SO2. 

In order to produce the emissions of the car fleet, cars are classified according to their emission factors, 
which depend on their age, fuel and size. The emission factors for cars follow the COPERT methodology 
and use a tank-to-wheel approach. 

The car stock model distinguishes the following fuel classes: gasoline, diesel, CNG, LPG, hybrid (both 
gasoline and diesel), plug-in hybrid (both gasoline and diesel) and electric cars. 

In order to be able to apply the COPERT methodology, we have split gasoline, diesel and hybrid cars 
according to the following criteria: 

– Cylinder capacity less than 1400 cc: “small”; 

– Cylinder capacity between 1400 and 2000 cc: “medium”; 

– Cylinder capacity larger than 2000 cc: “big”. 

We have ignored the COPERT class “mini” for gasoline cars, as the number of cars in this size class is 
negligibly small compared to the existing car stock. 

For LPG, CNG and electric cars, there is only one COPERT class. We have however also split electric 
cars in categories “small”, “medium” and “big” according to the capacity of their batteries. For given 
dimensions of the car, the battery capacity is a proxy for the autonomy of the car, or, for a given auton-
omy, for the dimensions of the car. We have taken 20 kWh and 80 kWh as respective thresholds for the 
“electric car size classes” – while this is a bit arbitrary, it corresponds pretty well to the classification we 
would obtain based on the car’s physical dimensions. We have also verified that these “size classes”" 
are relatively homogeneous in terms of driving range. 

From the Belgian national vehicle registry, we obtain each car’s age and we can thus apply vintage 
specific emission factors. 

3.2. Data on the composition of the car stock 

All data on vehicle registrations have been obtained from the Belgian national vehicle registry, the DIV3.  
The records contain, inter alia, information on the fuel used by the car and its cylinder capacity, which 
have been used to determine its COPERT class. Note that, while the records identify a car with its chassis 
number, the DIV only records the time during which a car was linked to a Belgian license plate. This 

                                                           
3  Direction pour l’Immatriculation des Véhicules/ Dienst voor Inschrijvingen van Voertuigen. 
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implies that we cannot distinguish between a second-hand car that was imported and a new car that is 
brought into circulation. Similarly, we cannot see whether a car was scrapped or exported. Some cars 
also vanish temporarily from the database, because they have been sold on the second-hand market, 
and there is a transition period between the former owner handing in his license plate, and the new 
owner requesting a new one. 

With these caveats in mind, we have made the following assumptions: 

– For the survival model (see Section 4.2), we have taken 2016 as last year for our data set and assumed 
that all cars that had been taken out of the database and not registered again before the end of 2017, 
have effectively been scrapped. 

– For the discrete choice model (see Section 4.3), we have assumed that all newly registered cars are 
effectively new cars. 

Although the DIV data identify the cars that are owned by leasing companies, they cannot differentiate 
between privately owned cars and cars owned by a company (other than a leasing company). This is an 
important limitation, as the decision criteria used by company fleet managers are likely to differ from 
those used by households. We will come back to this issue in the interpretation of the results. 

3.3. Behavioural data 

The household data used in the discrete choice model are based on the Belgian national mobility behav-
iour survey BELDAM. As explained in Laine and Van Steenbergen (2017), BELDAM is a sampled cross-
sectional survey, carried out in 2010, and covers the population of Belgian residents. The sample consists 
of some 8,500 households that represent more than 15,800 individuals aged six or more. This survey is 
sufficiently large and correctly weighted to be considered as representative of the Belgian population. 

The first questionnaire in the survey addresses general characteristics such as household income, the 
educational and professional status of each household member and many other useful control variables. 
It also provides detailed information on the number of vehicles owned by the household and their char-
acteristics. It includes aggregate use data in the form of kilometres driven per year. 

The second questionnaire is individual, and includes each person in the household aged six or more, 
for whom a number of items regarding regular mobility behaviour (such as commuting behaviour) and 
a trip log for a randomly selected day during the survey period are reported. 

3.4. Data on car costs and autonomy 

In short, the sources for the car related data (such as their cost and autonomy) are: 

– All assumptions on tax rates are based on an annual publication by the Federal Public Service Fi-
nance, the “Tax survey”. 
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– For each COPERT class, the purchase cost has been calculated as the average purchase cost of the 20 
best sold models4 in the class (weighted according to the share of each model in the sales). The cost 
information was obtained from the “Moniteur Automobile” for gasoline, diesel and electric cars. 
Because of the lack of publicly available data on CNG, LPG and hybrid cars, we have compared the 
purchase cost of a limited number of hybrid cars5 with their gasoline or diesel “equivalent” and ap-
plied the average ratio to all hybrid cars of the same size class. 

– For electric vehicles, the range in the base year was estimated per size class as the weighted average 
range of the ranges per size class (weighted according to the share of each model in the sales). These 
data were obtained mostly from Wikipedia6, where we have used the lower bounds to the estimated 
ranges7.  

– The annual maintenance costs are based on Letmathe and Suares (2017). Insurance costs have been 
obtained from the National Bank of Belgium8. Annual control costs have been estimated using the 
annual report of GOCA, the professional association of Belgian car inspection centres. 

– We have used the projections of fuel prices and electricity prices in the long-term energy outlook for 
Belgium (Gusbin and Devogelaer 2017). 

The expected evolution of the autonomy of electric vehicles and of the purchase costs of cars is based 
on Cambridge Econometrics (2018), which has validated its assumptions in an extensive stakeholder 
consultation. 

For the classification of the cars according to size class, we have used the cylinder capacity reported by 
the DIV for cars with combustion engine. For electric cars, we have used data on the battery capacity, 
which were available on Wikipedia. 

3.5. Historical mileages: data and assumptions 

The annual report “Kilometers afgelegd door Belgische voertuigen” published by the Federal Public 
Service Mobility and Transport (FOD Mobiliteit en Vervoer, 2017) contains estimates of the mileage and 
the car stock for 5 fuel types (gasoline, diesel, LPG, CNG and electric) and for 20 age classes. There is no 
information in this publication to differentiate according to size classes, but for gasoline, diesel and LPG, 
we have used old (2013) FOD data of the mileage according to size classes. 

Data on annual mileages per age class are needed for two purposes: (a) for the survival model (see 
Section 4.2), as the accumulated mileage per age and size class affects the probability that a vehicle will 
be scrapped (b) for emission modelling, as the emission factors depend on a car’s age-class. 

                                                           
4  To the extent that data were available on those models. 
5  For instance, the Toyota Yaris and Mitsubishi Outlander. 
6  Given that the manufacturers have a very strong incentive to remove any factually incorrect information on their product, we 

assume that the information provided on Wikipedia is sufficiently reliable for our purposes.  
7  This is usually the EPA Federal Test Procedure, which is more conservative (and arguably realistic) than the New European 

Driving Cycle, which is also often reported. 
8  Statistics published as part of the supervisory review process of insurance and reinsurance undertakings. 
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As we do not always have observations for all age classes (and never for cars older than 20 years), we 
have estimated the mileage per age class as a quadratic function of age, with the additional constraint 
that the mileage is bounded away from zero and is non-increasing over the relevant interval. The precise 
parametrisations differ from fuel to fuel. Given that the oldest cars for which observations are available 
are 20 years old, out-of-range forecasts are unlikely to be accurate. Moreover, very old cars are likely to 
be registered as “old timers”, which can only be used for very specific purposes and are unlikely to be 
affected by policy parameters. We therefore ignore all cars that are at least 25 years old. 

In order to fill in data gaps in the base year 2015, we have proceeded as follows. 

For gasoline and diesel, we have differentiated the age-specific mileages according to size class, assum-
ing that these mileages had evolved proportionally to the observations for 2013. Formally, let 𝐷௙,௔,௖,௬be 
the annual distance driven for fuel type f (gasoline or diesel), age 𝑎 ∈ 𝐴 = {1, … ,25} and size class 𝑐 ∈𝐶 = {𝑠, 𝑚, 𝑙} in year y, and let 𝑆௙,௔,௖,௬ be the corresponding number of cars. Let 𝐷௙,௔,௬ be the annual dis-
tance driven for fuel type 𝑓 and age 𝑎 in year 𝑦 (averaged over the size classes). As explained above, 
statistics on 𝐷௙,௔,ଶ଴ଵହ, 𝑆௙,௔,௖,ଶ଴ଵଷ and 𝐷௙,௔,௖,ଶ଴ଵଷ are available.  

Then, for instance, for “medium” cars, we assume:  
 𝐷௙,௔,௠,ଶ଴ଵହ = 𝐷௙,௔,ଶ଴ଵହ ∗ 𝐷௙,௔,௠,ଶ଴ଵଷ𝐷௙,௔,ଶ଴ଵଷ  where 𝐷௙,௔,ଶ଴ଵଷ = ∑ 𝑆௙,௔,௖,ଶ଴ଵଷ௖∈஼ . 𝐷௙,௔,௖,ଶ଴ଵଷ∑ 𝑆௙,௔,௖,ଶ଴ଵଷ௖∈஼  

For all other fuel types, it has been assumed that the mileages are the same for all size classes. For hybrid 
cars, it has been assumed that mileage per age class is the same as for gasoline or diesel cars (depending 
on the fossil fuel used by the hybrid car).  

Moreover, for the purposes of our discrete choice model (see Section 4.3), we need an average “annual 
mileage” across all age classes to translate the variable costs (which are usually expressed in EURO per 
km) in costs per month.  

For CNG and electric cars, we assume that the annual mileage is the same for each size class, and we 
take simply the weighted average across all age classes per fuel.  

For gasoline, diesel and LPG, we assume that the annual mileage for each size class is the weighted 
average across the age classes for this size class in 2013, updated to 2015, proportionally to the evolution 
in the weighted average across all size and age classes for 2015. Formally, using analogous notation as 
above, we obtain for “medium” cars:  
 𝐷௙,௠,ଶ଴ଵହ = 𝐷௙,ଶ଴ଵହ ∗ 𝐷௙,௠,ଶ଴ଵଷ𝐷௙,ଶ଴ଵଷ . 
The base year data for the annual mileage for hybrid cars are set equal to those of gasoline or diesel cars.  

For the future evolution of the annual mileages per age class, fuel type and size class, we have assumed 
that they grow proportionally with the total demand for passenger cars transport as projected by the 
modal and time choice module in the PLANET model.  
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4. Model description 

In this section, we describe the three components of our car stock model: (a) the demand model, deter-
mining the desired car stock (b) the survival model, determining whether or not a car is scrapped in a 
given year (c) the allocation model, determining the composition of new sales. 

4.1. The demand model 

In a first step, we determine how many cars are held, on the aggregate, in a given year. We assume that 
the total desired car stock per capita follows a Gompertz curve:  

𝑉௧ = 𝑉∗. 𝑒ఈ௘ഁ.೤೟  

Where 𝑉௧ is the desired number of cars per capita in year t, 𝑉∗ is the saturation level of vehicle owner-
ship expressed as number of cars per capita, 𝛼 and 𝛽 are parameters (to be estimated) and 𝑦௧ is GDP per 
capita in year t. This specification represents a car stock that increases with income levels, but where 
growth levels off when a saturation point is reached.9  

Wu et al. (2014) provide estimates for these parameters for the US, Japan, the OECD as a whole and 
Europe, with 𝛼 = −3.06792 and 𝛽 = −0.00013 for Europe. They assume a saturation level of 0.5 cars 
per capita. Dargay et al. (2007) have estimated a saturation level of 647 cars per 1000 people for Belgium.  

We have initially applied the saturation levels of Dargay et al. (2007) and the parameter estimates of Wu 
et al. (2014) to Belgium for the period 2008-2016. As illustrated in Graph 1, the estimated car stock is 
much higher than the actual car stock.  

This is what we would have expected: the share of the Belgian population aged 18 or more is projected 
to remain around 80% in the coming 50 years (Federaal Planbureau and Statbel 2018). A saturation level 
of 647 cars per 1000 people would imply a car ownership rate of over 80% for the share of the population 
that is old enough for a driver’s license, which seems a lot.  

Therefore, we have used an alternative approach, where we have maintained the 𝛽 value of Wu et al. 
(2014), but estimated 𝑉∗ and 𝛼 with Ordinary Least Squares (OLS). In a Gompertz function, the 𝛼 trans-
lates the graph to the left or to the right. Intuitively, 𝛼 determines at what point in time the function 
“takes off”, while the 𝛽 is the growth rate, and determines the speed of the transition to the saturation 
point. Thus, we assume here that the estimated growth rate for Europe is representative for Belgium, 
but that the take-off point and the saturation point are idiosyncratic and need to be estimated.  

While 𝑅ଶ = 0.87, with such a sample size, formal statistical tests do not make much sense, but graphical 
analysis shows that with 𝛼 = −8.3851 and 𝑉∗ = 0.61, we obtain a decent match with the observed car 
stock. We therefore use this specification for the projections of the future car stock.  

                                                           
9  One limitation of this approach is that it cannot represent transitions to new mobility paradigms that are centered around 

“use” rather than ownership. 
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4.2. The survival model 

In this step, we estimate how many cars are retired from use each year. We estimate a separate survival 
function per COPERT class – this survival function describes how the probability of being retired from 
use in Belgium evolves with age. The outcomes per COPERT class and vintage are aggregated to deter-
mine the total number of cars that are retired from the car stock.  

Note that other variables than a car’s age, such as its accumulated mileage, can influence the probability 
of retirement. As the annual mileage per car changes from year to year, the probability of retirement for 
a given age will also evolve over time. Therefore, we express the probability of retirement not just as a 
function of a car’s age, but also of its first year of use (its vintage).  

To be concrete, for the implementation of this approach, two concepts are key: the survival function 𝑆(𝑡)௙,௦,௩ and the scrappage rate ℎ(𝑡)௙,௦,௩.  𝑆(𝑡)௙,௦,௩ gives the probability that a car of vintage 𝑣, fuel 𝑓 and size 𝑠 is still in use after 𝑡 years. The 
scrappage rate ℎ(𝑡)௙,௦,௩ = ௌ(௧ିଵ)೑,ೞ,ೡିௌ(௧)೑,ೞ,ೡௌ(௧ିଵ)೑,ೞ,ೡ  gives the conditional probability that a car of a given COPERT 

class and vintage will be scrapped after 𝑡 years, given that it has survived 𝑡 − 1 years. It is applied to 
the surviving stock.  

As ℎ(𝑡)௙,௦,௩ can be obtained directly from 𝑆(𝑡)௙,௦,௩, we focus here on the survival function. Two func-
tional specifications have been estimated for the survival function: the loglogistic and the Weibull. In 
the current version of the model, we have implemented the loglogistic specification (see Cleves et al. 
(2016), p. 275):  𝑆(𝑡)௙,௦,௩ = (1 + (𝑒ିఉ೑ିఉೞ೔೥೐ିఉ಼೘∗஺௖௖௨௄௠ೡశ೟,೑,ೞ ∗ 𝑡)ଵ/ఊ೑)ିଵ 

Graph 1  Forecasted versus actual car stock 
Number of cars 

 
Source: DIV and CASMO 
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The 𝛽 and 𝛾 parameters need to be estimated where 𝛽௙ is a fuel-specific constant, 𝛽௦௜௭௘ is a size-specific 
dummy variable, 𝛾௙ is the fuel-specific shape parameter of the loglogistic function and 𝛽௄௠ is the pa-
rameter associated with 𝐴𝑐𝑐𝑢𝐾𝑀௩ା௧,௙,௦, the average accumulated km driven by a car of this fuel and size 
class and with age 𝑣 + 𝑡.  

In the current version of the model, three different data sets have been used to estimate this statistical 
relationship. All data sets have been obtained from the DIV.   

The first data set contains observations on accumulated mileages, which the DIV obtained from the 
professional association of car inspection centres, GOCA. However, as only cars that are older than 4 
years are subject to the inspections by GOCA members, the sample was heavily biased towards older 
cars and contained no information on scrapping of cars that are not subject to GOCA inspections. There-
fore, we have decided not to implement this specification yet, and we have set the parameter value for 
the impact of AccuMileage, 𝛽௄௠, equal to zero. However, obtaining access to data sets with the accu-
mulated mileages for a representative sample of cars is high on our priority list for future actions.  

The second data set contains no information on accumulated mileage, and was limited to vehicle scrap-
ping since 2012 – this is the first date for which observations on hybrid vehicles allow us to differentiate 
between plug-in and charge-sustaining hybrids. For hybrid vehicles and other alternative fuels, these 
data were used to estimate 𝑆(𝑡)௙,௦,௩.  

Third, for diesel and gasoline engines, we have used all DIV data that have been made available to us, 
going back to 2002.  

Table 1 gives the estimates of 𝛽ఊ, 𝛽௦௜௭௘ and 𝛾 for each COPERT class. For the sake of conciseness, the 
detailed results for individual parameters (such as the confidence intervals) have been omitted here, but 
they can be obtained from the author on simple request. Note that most values of 𝛽௦௜௭௘ have been set 
equal to zero by the STATA econometric software to deal with multicollinearity.  

Table 1 Estimated parameters of the survival function 

Car type βfuel βsmall βmedium βbig γf 
Gas 8.5632 0.0000 0.0000 0.000 0.3690
Diesel 8.2104 0.0000 0.0000 0.000 0.4727
LPG 8.7256 0.0000 0.0000 0.000 0.2764
CNG 7.5391 0.0000 0.0000 0.000 0.5683
GH_cs 8.2690 0.4171 0.0000 -0.078 0.5453
GH_phev 8.2394 -0.4393 0.3313 0.000 0.4767
DH_cs 7.6805 0.0000 -0.1582 0.000 0.4093
DH_phev 7.5394 6.2008 0.0000 0.000 0.5693
electric 7.6908 0.0000 0.0000 0.000 0.4667
Source: CASMO 
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4.3. The allocation model 

In this stage, we allocate total car sales in a given year to the respective COPERT classes. As discussed 
in Franckx (2017), for the purpose of long term projections, the use of models based on observed market 
behaviour (Revealed Preference) studies is not advised in markets with new or emerging technologies 
who currently have very low market shares. Moreover, to the best of our knowledge, there are no Re-
vealed Preference studies of the Belgian car market that we could use to estimate the market shares of 
the different COPERT classes in total new car sales.  

We have therefore used the parameter values of a Stated Preference model estimated in The Nether-
lands. In what follows, we describe succinctly the key features of this model. We discuss why a direct 
application of the model to the Belgian market results in a very poor predictive value. As discussed in 
the literature, we thus need to calibrate the model parameters to reflect the reality of the Belgian market 
in our reference period. We briefly describe the key characteristics of this market, and then discuss the 
outcomes of the calibration method we used.  

4.3.1. The Hoen-Koetse model 

For our allocation model, we have used the parameter values of the discrete choice model of Hoen and 
Koetse (2014). We have chosen this study because (a) it can be applied to all the alternative fuels that are 
included in the PLANET model10 (b) it is a relatively recent study, undertaken in a country (The Neth-
erlands) that is comparable to Belgium.  

Hoen and Koetse have used a stated choice experiment to estimate two discrete choice models of alter-
native fuel vehicle preferences: a mixed logit (ML) model (not including interaction terms with house-
hold characteristics) and a multinomial logit (MNL) model (including interaction terms with household 
characteristics).  

In order to make maximal use of the available data (and in particular the household data reported in 
BELDAM), we will discuss in detail the model results based on the parameters estimates of the multi-
nomial logit model (Table 9 in Hoen and Koetse). However, in order to test the robustness of the results, 
we will also summarize the results of model simulations based on the mixed logit model (Table 7 in 
Hoen and Koetse) – see Section 5.5. 

                                                           
10  Lebeau et al. (2012) have estimated the market potential for electrified vehicles in Flanders. However, the estimation approach 

used (hierarchical Bayes) cannot readily be integrated into our modelling framework. 
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Table 2 Coefficients of the MNL model 
Description Coefficient 
Alternative specific constants
ASC for hybrid cars -0.8587 
ASC for electric cars -3.0912 
ASC for plug-in hybrid cars -1.7162 
Coefficients without interaction effets 
Driving range electric cars 0.0018 
Monthly costs -0.0031 
Purchase cost -0.0672 
Interaction effets with “commuting at least 5 times per week”
HybridHighCommute -0.1929 
ElectricHighCommute -0.1012 
PlugInHybridHighCommute -0.1958 
Interaction effets with “annual distance driven” 
Electric_7500_15000 -0.4636 
Electric_15000_25000 -0.8562 
Electric_25000_35000 -0.9324 
Electric_35000 -1.4541 
Interaction between “driving range EV” and “annual distance driven”
ElecRange_7500_15000 0.0016 
ElecRange_15000_25000 0.0025 
ElecRange_25000_35000 0.0023 
ElecRange_35000 0.0037 
Interaction effect with “current car is a diesel” 
HybridCurrDiesel 0.191 
electricCurrDiesel -0.2147 
PlugInHybridCurrDiesel -0.1068 
Interaction effect with “current car is a LPG” 
HybridCurrLPG -0.3153 
electricCurrLPG -0.0115 
PlugInHybridCurrLPG -0.3339 
Interaction effect with “respondent was female”
MonthCostFemCoef -0.0018 
PurchCostFemCoef -0.00135 
Interaction effect with “annual distance driven is less than 7500 km”
SmallMileageCoef -8e-04 
PurchCstSmallMlgCf 0.0098 
Interaction effect between “driving range electric” and “charging potential at home” 0.2397 
Source: Hoen and Koetse, 2014, Table 9 

The most important limitation of this model is that a household’s choices are assumed to be independent 
of its income level. It does include a wide range of other socio-economic variables, though. Actually, 
some of the features used in the MNL model are not available in BELDAM and could not be used. Table 
2 reports the coefficients that we have effectively used.  

Compared to the previous version of the car stock module in the PLANET model (Mayeres et al. 2010), 
an important change is that this model does not have a nesting structure. However, Hoen and Koetse 
explain in the paper that they have estimated variants with a nesting structure, but that these do not 
appear to add a lot compared to the MNL specification.  

In order to apply the model to Belgian data, note that the Hoen-Koetse discrete choice model distin-
guishes between “acquisition costs” and “variable costs”. In Belgium, the “acquisition costs” are com-
posed of the actual purchase price (including VAT) and the licence tax. The “variable costs” are com-
posed of the fuel costs (including excise duties), the annual circulation tax and the insurance, mainte-
nance and inspection costs, all including indirect taxes such as the VAT. In the discrete choice model, 
these “variable costs” are expressed as costs per month. As fuel costs depend on the distance driven, 
the application of the model thus requires data on the annual distance driven per COPERT class.  
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4.3.2. Calibration of the SP model to Belgian data 

It is also well known (see for instance Axsen et al. 2009) that stated preference models of alternative 
fuels tend to result in overly optimistic estimates of the alternative powertrains. Axsen et al. (2009) have 
argued that the joint use of Stated Preference (SP) and Revealed Preference (RP) data can combine their 
specific strengths. Indeed, in the deterministic terms of the random utility function, the attribute coeffi-
cients represent the trade-offs between the attributes (for instance, the cost per km of fuel consumption 
versus the autonomy of the model) while the alternative specific constant terms (ASC) represent utility 
that is not captured by the attributes. The ASC can then be used for calibrating RP models to fit observed 
market shares – data that are readily available from the DIV.  

Table 3 Market shares in Belgium versus those predicted by Hoen-Koetse model before calibration to Belgian market 
shares 
Percentages 

COPERT Observed Forecast 
CNG 0.4592 9.9511 
LPG 0.0405 0.6959 
dies_small 0.6428 17.8772 
dies_medium 41.3733 6.1825 
dies_big 3.8045 1.4692 
gas_small 37.6881 21.3168 
gas_medium 10.0790 12.0928 
gas_big 0.8530 0.4937 
gashybr_cs_small 0.0005 9.4279 
gashybr_cs_medium 1.7696 5.5565 
gashybr_cs_big 0.5044 0.2835 
dieshybr_cs_small 0.0000 4.1480 
dieshybr_cs_medium 0.0103 1.3101 
dieshybr_cs_big 0.0232 0.2184 
gashybr_phev_small 0.1501 3.3780 
gashybr_phev_medium 1.6740 1.8623 
gashybr_phev_big 0.3003 0.0878 
dieshybr_phev_small 0.0001 2.2870 
dieshybr_phev_medium 0.0002 0.5178 
dieshybr_phev_big 0.1277 0.1069 
electric_small 0.0315 0.4694 
electric_medium 0.2448 0.2508 
electric_big 0.2229 0.0164 
Source: DIV and CASMO 

Table 3 confirms that, with the ASC taken from Hoen and Koetse, the predictions of the market shares 
in 2017 are wide off the mark. The following observations are noteworthy:  

– The forecasted shares for CNG are much larger than the actual shares, probably because the esti-
mated parameters in the Hoen-Koetse model do not adequately reflect some disadvantages of CNG 
cars (lower performance, reduced storage space, reduced range compared to gasoline etc) – note that 
Hoen and Koetse had not explicitly included CNG in their choice set.  

– According to the Hoen-Koetse model, “small” diesel cars should be more popular than “medium” 
diesel cars – in the Belgian reality, “medium” cars completely dominate the diesel market, probably 
reflecting the importance of the company cars in this segment.11  

                                                           
11  Indeed, the fiscal treatment of the private use of company cars distorts the market for passenger cars, but our data do not 

allow to deal with this in a satisfactory way. The problem is not just that the financial incentives facing fleet managers of 
companies differ from those faced by private households: their behavioural response to prices are also likely to be different 
(arguably more rational) - see for instance Brand et al. 2017. 
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– The Hoen-Koetse model underestimates the share of “small” gasoline car by about 50%. 

– The most striking observation, though, are the higher shares predicted for electrified (electric and 
hybrid) cars: for charge-sustaining gasoline hybrids, 15.27%; for plug-in gasoline hybrids, 5.33%; for 
charge-sustaining diesel hybrids, 5.68%; for plug-in diesel hybrids, 2.91%, and for electric cars, 
0.74%. This probably reflects that, in the perception of the Belgian consumers, there are some intrin-
sic disadvantages to electrified cars that are not captured in the Hoen-Koetse model. We also need 
to keep in mind that, for the cost data on hybrid cars, we had to rely on extrapolations from very 
small data sets. It is not clear to what extent the cost data we have found are representative, but is 
clear that everything written here about hybrid cars should be interpreted with caution.  

These findings confirm the need to calibrate the ASC to the Belgian market outcomes.  

A first possible approach is to find ASC such that the predicted market shares for each powertrain are 
the observed market shares in the base year of the model (Train 2009, p 33). The procedure can be sum-
marized as follows:  

– For each household in the BELDAM survey, and for each COPERT class, we calculate the probability 
that the household will choose a vehicle in this COPERT class, given the characteristics of the house-
hold, and the average costs and range of vehicles in each COPERT class.  

– We calculate the weighted averages of these probabilities (where the weights are the weights of each 
household in the BELDAM survey).  

– These simulated probabilities 𝑃 are compared with the observed shares 𝑆, and the alternative con-
stants are modified according to the following formula:  

𝐴𝑆𝐶ே௘௪ = 𝐴𝑆𝐶ை௟ௗ + log 𝑆𝑃 

With our data, this procedure converges within 5 steps. However, in line with the literature (see Jensen 
et al. 2017), we found that our estimates of the ASC were highly sensitive to the year (and the corre-
sponding market share) used for calibration. Actually, market shares in the period 2012-17 were very 
volatile, and we will now briefly digress on the causes for this volatility before proceeding with an 
alternative calibration method.  

4.3.3. Evolution of market shares and costs in Belgium between 2012 and 2017 

Between 2012 and 2017, important changes have taken place in the policy environment, and these have 
clearly affected observed choices in this period.  

Indeed, as a result of the “Dieselgate” scandal that erupted in September 2015, governments in Europe 
have started taking measures to reduce the attractiveness of diesel cars.  

On the one hand, these measures include changes in the Belgian fiscal regime governing these cars. 
Between 2015 and 2018, excise duties on diesel have increased from 0.43 to 0.59 EURO per litre, while 
those on gasoline just increased from 0.61 to 0.63 EURO per litre. Moreover, the calculation methods for 
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the licence tax and the annual circulation tax were modified. Such measures directly affect the costs of 
cars and are adequately captured by discrete choice models of vehicle choice.  

On the other hand, (mostly local) governments throughout Europe have announced “diesel bans” and 
Low Emission Zones (see for instance Hockenos 2018). These measures also affect the value of diesel 
cars: even if the measures will only enter into force in the future, they reduce the second-hand value of 
diesel cars, and this also reduces the value of diesel cars on the market for new cars.  

It can indeed be verified (see the Annex for the details) that, as the result of changes in the annual cir-
culation tax, in the “big” segment, the average variable costs of diesel cars have increased, and those of 
gasoline cars have decreased since 2015. For the other size classes and for electric, there are no notewor-
thy changes.  

In the same period, the average licence taxes have increased more for gasoline and electric cars than for 
electric cars. However, compared to total acquisition costs, these changes are very small.  

As the result of these changes, there has been an important decrease in the market shares of diesel cars, 
especially in the “medium” segment, in parallel with an important uptake in the share of “small” gaso-
line cars. Although these trends were already visible before 2015, there is a clear acceleration as from 
2015 on.  

These changes in market shares are higher than what we would expect a priori from the changes in the 
circulation tax only, and probably reflect a broader concern amongst car buyers that the general policy 
climate has become less favourable to diesel.  

The market shares of electric cars remain very small (around 0.5 per cent over all size classes), even if 
we can observe some growth in the medium and the big segments – in the “big electric” segment, this 
is too a large extent a “Tesla effect”.  

In 2017, the last year used for the calibration, the total acquisition cost of electric and hybrid cars was 
still higher than for gasoline and diesel cars. In the size segment “big”, the acquisition costs are about 
twice as high as for diesel cars. The differences are slightly less pronounced for the “medium” and 
“small” cars but remain non-negligible.  

If we zoom in on the cost differences between the “conventional” fuels, we see that in the “small” seg-
ment, the differences between diesel and gasoline cars have become very small. In the “medium” seg-
ment, diesel cars are more expensive, while the opposite is true for the “big” segment – a more detailed 
analysis of the data has shown that this largely attributable to the big share of premium cars in the “big 
gasoline” segment.  

The picture is different when we look at the variable costs: in all size classes, electric cars, plug-in hy-
brids and gasoline hybrids have lower variable costs than gasoline and diesel cars. Diesel cars now have 
higher variable costs than gasoline cars. As discussed before, this reflects important changes in the tax 
policy vis-à-vis diesel. Diesel hybrids generally have rather high variable costs, even when compared 
to gasoline and diesel cars.  
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4.3.4. Results of the calibration 

Given the unstable context between 2012 and 2017, we have not proceeded with an exact calibration to 
replicate market shares in one single year but have instead estimated the ASC with non-linear least 
squares, as implemented by Jensen et al. (2017).  

In this approach, we again take the coefficients estimated by Hoen and Koetse (2014) for our discrete 
choice model, except for the ASC. In order to estimate the ASC, we take the observed market shares of 
each COPERT class in the years for which we have observations for all COPERT classes (2012 to 2017) 
and calculate the ASC that minimize the sum of the squares of the differences between the observed 
and the estimated market shares. In other words, the ASC are chosen to minimize the differences be-
tween predicted behaviour (using the parameters of the micro-econometric model) and observed be-
haviour at the aggregate level.  

Because the ASC appear both in the numerator and the denominator of the logit function, non-linear 
least squares are necessary.  

In the estimation procedure, we have to take into account the following constraints:  

– In each year, the market shares sum to one. As a result, for each observation year, we need to fix one 
of the ASC.  

– For some COPERT classes, the observed market shares are zero, and the ASC must thus be infinitely 
large (or take a value that is sufficiently large to ensure that the predicted market shares are indeed 
zero).  

The non-linear least-squares model (NLLS) has been estimated with the nlsLM function from the 
minpack.lm library in the R programming language. This function requires the user to provide initial 
values for the parameters that need to be estimated. We have used the values resulting from the exact 
calibration in 2017. Note that the procedure is extremely sensitive to the choice of these initial values, 
and that different values can lead to non-convergence of the algorithm (or to the convergence towards 
a minimum rather than a maximum).  

Table 4 NLLS estimates of the ASC 
term estimate std.error statistic p.value
dies_medium 2.36 0.33 7.21 0.00
dies_big 1.63 0.35 4.72 0.00
gas_small 0.47 0.33 1.42 0.16
gas_medium -0.21 0.34 -0.61 0.54
gas_big 0.39 0.82 0.48 0.63
gashybr_cs_medium -1.38 0.53 -2.63 0.01
gashybr_cs_big 0.34 1.43 0.24 0.81
dieshybr_cs_big -0.76 4.83 -0.16 0.88
gashybr_phev_small -3.19 3.63 -0.88 0.38
gashybr_phev_medium -0.98 0.82 -1.19 0.24
gashybr_phev_big 0.92 2.20 0.42 0.68
dieshybr_phev_big -0.05 4.60 -0.01 0.99
electric_small -2.20 10.40 -0.21 0.83
electric_medium -0.21 2.74 -0.08 0.94
electric_big 2.66 2.63 1.01 0.31
DieselGate -0.34 0.04 -9.42 0.00
Source: CASMO 



WORKING PAPER 1-19 

26 

Some preliminary estimates showed that, despite the important changes in the market shares of me-
dium diesel and small gasoline cars after 2015, our estimates failed to capture these changes and per-
petuated the market behaviour observed in 2012-15. We have therefore added a dummy “DieselGate” 
to the expected utility of diesel cars purchased from 2015 on. As can be seen in Table 4, the coefficient 
for this dummy is statistically significant and has the expected sign: all other things being equal, the 
utility of diesel cars decreases from 2015 on, probably reflecting the negative climate (and changing 
policy environment) as a result of the Dieselgate scandal. Table 4 also shows that, for most COPERT 
classes, the ASC are not statistically significant from zero. (We have omitted the values of the 6 ASC 
that we had fixed exogenously).  
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5. Results 

In this section, we summarize the key outputs of the model: the evolution of the total car stock and the 
market shares of the different COPERT classes. We relate these results to the underlying assumptions 
regarding the evolution of the cost and range parameters. Where possible, we compare our results with 
those of other models. We also discuss how the projected market shares of the different COPERT classes 
evolve if we use the Mixed Logit model estimated by Hoen and Koetse rather than the Multinomial 
Logit.  

5.1. Evolution of the car stock 

Car ownership in Belgium is projected to grow from 5.76 million cars in 2018 to 7.04 million cars in 2040 
– this is an increase with 22.18% and corresponds to 0.57 cars per capita by 2040. For comparison, over 
the same period, GDP is assumed to grow with 37.21% – this is consistent with a car stock that is ap-
proaching its saturation point.  

5.2. Evolution of the market shares 

Graph 2 represents the evolution of the market shares of new cars. We observe a very sharp increase in 
the shares of gasoline cars around 2015, largely at the expense of diesel cars. As discussed before, this 
largely reflects the behavioural responses to the policy changes induced by Dieselgate. Also keep in 
mind that these changes are observed changes, not modelled ones. From 2020 on, the increase in the share 
of gasoline cars and the decrease in the share of diesel cars are projected to continue, albeit at a much 
slower pace.  

The shares of the “alternative” fuels remain very low, even though there is a steady increase in the share 
of electric vehicles.  
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We will now also have a look at the evolution per size class for diesel, gasoline and electric cars. This 
type of disaggregation wouldn’t be very informative for the other fuels, given their very small shares. 

Graph 3 shows that the decrease in the market share for diesel can be almost entirely attributed to the 
size segment “medium”, which was the most popular before “Dieselgate” broke out. 

 

Graph 2  Evolution of the market shares of new cars 
Percentages 

 
Source: CASMO 
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Graph 3  Evolution of the market shares of new diesel cars 
Percentages 

 
Source: CASMO  
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Graph 4 shows that the projected increase in the market share for gasoline cars is mainly driven by the 
size segment “small” and, to a lesser extent, by the size segment “medium”. The size segment “big” 
remains at a very low level – as discussed before, this is mainly a segment for premium cars. 

 

Finally, Graph 5 shows that the projected increase for electric cars is driven by both the “medium” and 
the “big” segments, while the share of “small” electric cars remains very small indeed. Total market 
shares for electric cars are not projected to exceed 2% in 2040. 

 

Graph 4  Evolution of the market shares of new gasoline cars 
Percentages 

 
Source: CASMO 
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Graph 5  Evolution of the market shares of new electric cars 
Percentages 

 
Source: CASMO 
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5.3. Evolution of costs and range 

It is important to understand the drivers behind this very slow uptake of electric vehicles. In the discrete 
choice model, the following three variables determine the utility of electric vehicles: the purchase cost, 
the monthly operating cost and the range of the electric vehicles.12  

The monthly costs are assumed to grow steadily during the projection period: by 7% between 2018 and 
2040 for “big” electric cars, for instance (see the Annex for the details). It can be verified that this is 
mainly driven by changes in the price of electricity.  

The model also assumes a steady decline for the purchase costs of electric vehicles (by -8% between 2018 
and 2040 for “big” electric cars) combined with an increase in the autonomy of electric vehicles (by 62% 
between 2018 and 2040 for “big” electric cars).  

We can now compare this with the evolution of the costs for diesel and gasoline cars.  

The model assumes an important increase in the monthly costs of diesel cars (around 26% for “big” cars 
by 2040), combined with an essentially constant purchase cost. Since the increase in the circulation tax 
in 2015, this increase in monthly costs is essentially driven by the increase in the fuel cost per km, which 
steadily increases between 2018 and 2040, by approximately 62%. 

The model also assumes a steady increase in the monthly costs of gasoline cars after an initial decrease: 
between 2020 and 2040, monthly costs are assumed to increase with 18% for “big” cars, for instance. It 
can be verified that this is due to (a) the decrease in the circulation tax in 2015 (b) the increase in the fuel 
cost per km between 2020 and 2040 (by 46%). The purchase cost is also assumed to stay essentially 
constant.  

Summarizing, while the purchase costs are assumed to decline for electric vehicles, they are assumed 
to remain constant for diesel and gasoline cars. The monthly costs increase for all powertrains, but less 
quickly for electric cars. Finally, the range of electric cars also improves over time. Thus, all parameters 
tend to make electric cars more attractive compared to their conventional counterparts. Given these 
evolutions, one would have expected a higher share for electric cars by 2040. However, between now 
and 2040, almost all substitutions between fuel types take place between gasoline and diesel cars.  

The most important driver behind this low sensitivity of the market shares for alternative powertrains 
to changes in costs and performance are the high values of the estimated alternative specific constants. 
Indeed, these constants represent the part of an alternative’s utility that cannot be captured by the ob-
served variables (see Section 4.3.2). Given the high values of the ASC, they continue to drive the results 
until well in the future. We will argue now that this is in line with similar modelling approaches applied 
in other countries. In Section 6.1 we shall discuss how the results change for different values of the ASC.  

                                                           
12  These variables also interact with household characteristics. In our projection, these household characteristics are kept con-

stant, but we have verified (detailed results are available on request) that our model outcomes are not very sensitive to changes 
in those household characteristics. 



  WORKING PAPER 1-19 

31 

5.4. Comparison with other models 

Comparing these projections with the results of other long-term forecasts and scenarios is not always 
an easy task. 

For instance, Bloomberg New Energy Finance projects, that, by 2030, 28% of new car sales will be electric 
cars (BNEF, 2018). However, as the underlying methodology is not in the public domain, we cannot 
assess why these results differ so much from ours. Based on a review of the literature, Berckmans et al. 
(2017) predict that by, by 2030, “25% of all vehicles sold will be either fully electric or hybrid.”  

The approach used in the IEA’s MoMo model (which are also used in the International Transport Fo-
rum’s Transport Outlook – see Fulton (2017a,b)) is broadly similar to ours, but the full details are not 
publicly available, which makes comparisons difficult. 

Even when the underlying methodology is transparent, market shares in new vehicle sales are often an 
intermediate result, and reports emphasize the final outcomes, such as emissions of pollutants and en-
ergy consumption – see for instance the survey of how the energy demand and CO2 emissions from 
transportation are modelled in five global models in Girod et al. (2013a,b). 

We can however compare the projected market shares in 2030 with those of a limited number of alter-
native recent models that cover countries in the EU, and who do publish their assumptions and inter-
mediate results:  

– In the reference scenario for the UK considered by Brand et al. (2017), “average purchase prices for 
BEV cars were assumed to decrease by 2.8% pa from 2015 to 2020, by 1.6% pa until 2030 and 0.6% pa 
until 2050. The Reference scenario further assumed gradual improvements in specific fuel consump-
tion and tailpipe CO2 emissions per distance traveled (…) Fuel consumption and CO2 improvement 
rates for future car vintages were assumed 1.5% pa”. Under these assumptions, sales of plug-in ve-
hicles remain below 5% of new vehicle sales in 2030 (Figure 6 in Brand et al.), which is only slightly 
higher than our projections. Under the EV2 scenario, 37% of new cars in 2030 are PHEVs and 8% 
BEVs, but this requires substantial policy changes. 

– The Market Acceptance of Advanced Automotive Technologies (MA3T) is a Multinomial Nested 
Logit model developed in the US (see Liu and Lin 2017). The model includes transition dynamics 
(such as manufacturers’ learning by doing and economies of scale) and user heterogeneity. The 
model assumes that, with time, the unobserved attributes of plug-in electric vehicles will become 
similar to those of conventional ones, and thus that the ASCs will converge as well. It projects the 
following market shares by 2030: 57% for conventional fuels, 11% for hybrids, 12% for plug-in hy-
brids and 20% for electric cars. By 2040, the projected market shares are, respectively: 38%, 13%, 17% 
and 32%.  

Thus, the outcomes of Reference scenario for the UK is similar to our model results, while the MA3T is 
much more optimistic than our model for the prospects of electrified cars. As we shall argue below 
(Section 6.1), this is mainly driven by the assumed change in the ASC. 
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5.5. Sensitivity: alternative allocation model 

As announced, we now have a brief look at the model predictions based on the Mixed Logit (ML) model 
estimated by Hoen and Koetse.  

In abstract terms, a mixed logit model can be defined as any model where the choice probabilities (for 
decision maker 𝑛 and alternative 𝑖) can be expressed as (see Train 2009, Chapter 6):  

𝑃𝑛𝑖 = ∫𝐿𝑛𝑖(𝛽). 𝑓(𝛽). 𝑑𝛽 

where 𝐿𝑛𝑖(𝛽) = 𝑒𝑉𝑛𝑖(𝛽)∑ 𝑒𝑉𝑛𝑗(𝛽)𝐽𝑗=1  (the logit probability evaluated for parameters 𝛽), 𝑉𝑛𝑖(𝛽) is utility as a func-

tion of 𝛽 and 𝑓(𝛽) is a density function. For linear utility functions, we obtain:  

𝑃𝑛𝑖 = ∫ 𝑒𝛽′.𝑥𝑛𝑖∑ 𝑒𝛽′.𝑥𝑛𝑗𝐽𝑗=1 . 𝑓(𝛽). 𝑑𝛽. 
As summarized by Train, the “mixed logit probability is a weighted average of the logit formula evalu-
ated at different values of 𝛽, with the weights given by density 𝑓(𝛽)”.  

If the “mixing” distribution is discrete, the mixed logit model reduces to the “latent class model”, where 
the weights correspond to the shares in the population of each “segment” with distinct choice behaviour 
or preferences. With continuous distributions, the 𝛽 can be interpreted as coefficients that vary over 
utility-maximizing decision-makers according to density 𝑓(𝛽). Moreover “(v)ariations in taste that are 
related to observed attributes of the decision-maker are captured through specification of the explana-
tory and/or the mixing distribution.”  

If one assumes that the density follows a normal distribution, the modelling thus entails the estimation 
of the means of the 𝛽 and their co-variance matrix.  

Hoen and Koetse have estimated random parameters for the ASC of alternative-fuel cars and for the 
driving range of electric cars, and fixed parameters for the monthly cost and the purchase cost.  
Table 5 gives the means and the standard deviation for the stochastic parameters, and Source: Hoen and Koetse (Table 7) 

Table 6 gives the estimates of the fixed parameters (for the purchase of new cars only) – the reader 
should keep in mind that we only report the coefficients for the variables that we use in our own discrete 
choice model.  

Table 5 Distribution of the stochastic parameters in the ML model 
Description Mean Standard.deviation 
ASC for hybrid cars -1.3432 1.0439 
ASC for electric cars -4.3908 2.2593 
ASC for plug-in hybrid cars -1.9846 1.2138 
Driving range electric cars 0.0063 0.0032 
Source: Hoen and Koetse (Table 7) 
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Table 6 Coefficients of the fixed parameters in the ML model 
Description Mean 
Monthly costs -0.0047 
Purchase cost -0.1223 
Source: Hoen and Koetse (Table 7) 

In order to apply the model to the Belgian context, we have again used NLLS to re-estimate the ASC 
using Belgian registration data in the time-span 2013-17.  

Graph 6 gives the projection of the market shares until 2040, using the re-calibrated Mixed Logit (ML) 
model. Compared to the Multinomial Logit model (MNL) (see Graph 2), we see that the markets share 
of BEV grows somewhat more, mostly at the expense of gasoline and diesel cars.  

 

It is important to try to understand the driving forces behind these differences.  

In the MNL model, the households are explicitly represented through interaction effects between house-
hold characteristics with the cars’ features (for instance, the interaction between the driving range of 
electric cars and the commuting behaviour of the households). The coefficients have been estimated 
with a Dutch sample and applied to a sample of Belgian households (the BELDAM sample), assuming 
implicitly that the findings from the Dutch context can be applied to the Belgian (and thus that the 
unobserved and observed characteristics of the households are related in the same way in both sam-
ples).  

In the ML model, there is no explicit representation of the households’ characteristics, even the observ-
able ones: differences between the households are captured through the probability distribution for the 
coefficients. Thus, if there are systematic differences between the sample used by Hoen and Koetse and 
the BELDAM sample, the ML model will lead to biased projections for Belgium.  

Graph 6  Evolution of the market shares of new cars with the mixed logit model 
Percentages 

 
Source: CASMO 

0%

10%

20%

30%

40%

50%

60%

70%

2013 2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035 2037 2039

CNG dies dieshybr_cs
dieshybr_phev electric gas
gashybr_cs gashybr_phev LPG



WORKING PAPER 1-19 

34 

Table 7 Household characteristics in BELDAM vs Hoen and Koetse  
Percentages 

 BELDAM Hoen.Koetse
Frequency of car commute at least 5 times per week 38.4 33 
Annual mileage current car < 7500 29.3 9 
Annual mileage current car 7500-15000 23.8 33 
Annual mileage current car 15000-25000 25.3 31 
Annual mileage current car 25000-35000 12.5 15 
Annual mileage current car > 35000 9.0 11 
Share of female respondents 56.2 20 
Source: BELDAM and Hoen and Koetse 

Arguably the most important difference between both samples is the much higher share of female re-
spondents in BELDAM. However, the coefficients for the interaction effects with this variable are not 
very high.  

More importantly, the share of Belgian respondents who drive very little is much higher than in the SP 
sample used by Hoen and Koetse, while the share of respondents who drive between 7500 and 25000 
km on an annual basis is much lower in BELDAM. Given the interaction term with the dummy “elec-
tric” in the MNL, one would expect (all other things being equal) that electric cars would be more at-
tractive in the BELDAM sample than in the sample used by Hoen and Koetse. Also, the frequency of 
households with very high commuting frequencies is somewhat larger in BELDAM.  

However, we have verified that the model outcomes are not very sensitive to changes in the behaviour 
reported in BELDAM. Therefore, we would not expect this different specification to lead to drastically 
different results. And indeed, the projections based on the MNL do not differ fundamentally from the 
projections based on the ML model, at least after re-calibration of the ASC to fit the Belgian market in 
the years used for estimation.  
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6. Model improvements 

6.1. Decreases in perceived costs 

Arguably the most striking result of this paper is that almost all substitutions between fuel types take 
place between gasoline and diesel cars. Although electric and plug-in cars become increasingly cost-
competitive, their shares in total sales remain very small in 2040. This stands in contrast with other 
results that have drawn a lot of attention such as BNEF (2018) but is roughly consistent with other sce-
narios that are based on explicit econometric modelling (such as Brand et al. 2017 or Fulton et al. 2017b).  

In this section, we will explore how this is driven by the values of the ASC. As already pointed out (see 
Section 4.3.2), these constants represent the part of an alternative’s utility that cannot be captured by the 
observed variables.  

We have seen that the actual market shares of CNG, small diesel, electric and hybrid cars are much 
smaller than predicted by the Hoen-Koetse model without a calibration of the ASC to the Belgian mar-
ket. The calibration of the ASC to the Belgian market leads to a much-improved match in the period 
used for the estimation, but leads to a new issue: given the high values of the calibrated ASC, they con-
tinue to drive the results until well in the future – this is similar to the experience of Fulton et al. (2017).13  

We need however to raise the question whether this assumption of unvarying ASC is reasonable.  

Indeed, on the one hand, in the case of CNG and diesel, these unobserved variables refer to structural 
variables that are unlikely to evolve endogenously over time (for instance, the reduced storage place in 
CNG cars that we have already mentioned).  

On the other hand, in the case of electric and hybrid cars, it could be argued that the low familiarity of 
consumers with these technologies leads to outdated perceptions regarding their total cost of ownership 
and range. Indeed, the spectacular improvements in terms of autonomy and costs of electric cars are a 
recent, and largely unanticipated, phenomenon. 14  Outdated perceptions are likely to be corrected 
through actual experience and word-of-mouth effects (or “neighbour” effects). As discussed in the lit-
erature on technology adoption (see for instance Massiani 2013), such word-of-mouth effects are typi-
cally characterised by positive feedback loops: as the number of people with positive experiences with 

                                                           
13  Personal correspondence between Lewis Fulton and the author. 
14  Let us just consider a few examples of how reality has outrun even recent predictions of how the cost of batteries would 

evolve. In 2013, Wietschel et al. constructed three scenarios for electric vehicle penetration in Germany in 2020. In their most 
optimistic scenario, they assumed that, by 2020, a battery price of 320 EUR/kWh can be reached. Under this scenario, it was 
expected that sales of electric cars would range between 1 million and 1.4 million in Germany alone. In a recent survey, 
Nykvist et al. (2019) remind that, in 2013, it was assessed that “BEV could start to become attractive when battery costs reach 
300 USD/kWh”, and that this cost had already been reached by market leaders in 2014. If we take a fast forward with a few 
years, UBS (2017) concluded after a detailed engineering study of the Chevy Bolt, that the battery pack of the Bolt had a cost 
of 209 USD/kWh. This report also referred to a battery pack cost of 190 USD/kWh for the Tesla Model S. Even if we take the 
exact figures with a grain of salt, these figures are approximately one third below the most optimistic scenario of Wietschel et 
al. Of course, while the UBS study is very thorough, one could argue that the Bolt and the Tesla Model S are not typical. 
However, the IEA (2018) uses the BatPaC model to show that, with high enough production volumes, unit costs are “expected 
to lean towards the lower end of the USD 155-360/kWh range. This is because of the larger production volumes associated 
with the lower cost packs.” Finally, in their most recent assessment of progress, Nykvist et al. (2019) conclude that “the shift 
toward average price BEV with a range of 200 miles can start already at battery pack costs of 200-250 USD/kWh”. 
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new technologies increases, their positive comments will reach an ever-increasing number of people, 
who, if convinced, will also reach out to new potential consumers etc.  

This is consistent with a recent survey of consumer in six EU member states (that represent more than 
78% of new car sales in the EU in 2016), where Gómez Vilchez et al. (2017) have shown that the respond-
ents’ perceptions of the purchase and operating costs of electric cars has evolved positively since 2012. 
Given that the three models with the highest market shares in Belgium, the Tesla Model S, the BMW I3 
and the Nissan Leaf were introduced in Europe in 2013, 2013 and 2011, respectively, the potential for 
learning effects should not be dismissed lightly.15  

In the literature, such effects are typically represented by logistic functions or by a Bass diffusion model. 
Applications in the adoption of alternative fuel technologies are discussed in Massiani (2013), Massiani 
and Gohs (2015) and Fulton et al. (2017b).16  

Most of these applications focus on the growth in the sales of alternative fuel vehicles, but Jensen et al. 
(2017) propose an integration with discrete choice theory. In this approach, “social learning” effects are 
represented in the utility function for new powertrains: increases in accumulated sales of alternative 
powertrains lead to increases in their expected utility.  

In the CIMS model (see Axsen et al. 2009), neighbour effects are represented by adding an “intangible 
cost” function to the life-cycle costs of technologies – this intangible cost of a technology at a given time 
is a decreasing function of the market share of the technology in the previous simulation period. We 
have estimated such a “CIMS-like” approach, but the parameters of the “learning” function were not 
significant, and we have not further pursued this approach.  

Moreover, this approach cannot account for other elements that are likely to improve over time such as: 
the low density (or the perception of a low density) of the recharging infrastructure, especially of fast-
chargers ; the lack of diversity in the models that are available17; long delays in the delivery of orders… 
Valeri and Cherchi (2016) have also shown that habitual behaviour affects the preferences for specific 
types of engine technologies. With the passage of time, the purchasing power of younger cohorts of 
consumers (who are arguably more open to innovation than older ones) also increases, which could in 
itself lead to increase in the sales of new technologies.18  

An alternative approach could be to assume exogenous changes in the ASC that would reflect these 
changes in the unobservables.  

                                                           
15  Franke and Krems (2013) and Jensen et al. (2013) have also shown that three months of real-life experience with electric cars 

leads to changes in the willingness-to-pay for a higher range and in the minimal required range. 
16  Another way to represent social learning effects is through agent-based models. See for instance Eppstein et al. (2011) or 

Kangur et al. (2017). 
17  Liu and Lin (2017) and Mulholland et al. (2018) discuss how the density of the charging infrastructure and the availability of 

diverse models have been incorporated into the MA3T model. Ramea et al. (2018) integrate this behavioural approach in the 
Energy Systems Optimization Model TIMES. In a survey on the literature on consumer preferences for electric vehicles, Liao 
et al. (2017) conclude that the lack of diversity “may account for the low sales of EV”. Brand et al. (2017) also integrate the 
variety of supply in their projection model. Here as well, things could evolve very quickly at some point in the future. For 
instance, Volkswagen has now openly committed to a complete phasing out of combustion engines in its cars (Rauwald and 
Sachgau, 2018). 

18  Brand et al. (2017) explicitly model different consumer segments but keep their shares constant over time. 
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For instance, Brand et al. (2017) have “modelled ‘consumer learning’ and the neighbour effect by as-
suming that the technology bias encapsulated in the technology preference parameter (ASCi) decreased 
linearly with increasing sales from 100% of the ASCi value at no sales (essentially the values shown in 
Figure 5) to 0% when sales reach 25% and above.”  

Given that our choice model contains 23 choice variables, the changes in the ASC would be hard to 
interpret. We therefore propose a somewhat different approach: we ask what the market shares of each 
technology would be, given that the perceived purchase cost of cars with alternative powertrains would 
decrease by a certain amount compared to the actual cost in the reference scenario?  

 

In order to implement this approach, we have assumed that perceived costs decrease according to a sim-
ple logistic function. The advantage of this specific approach is that it reflects the typical dynamics of 
adopting new technologies: first imperceptibly, until a take-off point is reached, after which adoption 
will increase rapidly, until it converges to a new plateau when all learning effects have levelled out. 
Formally, the reduction in perceived costs in the current year, 𝑌𝑒𝑎𝑟, is:  𝑀𝑎𝑥𝑅𝑒𝑑𝑢1 + 𝑒𝑥𝑝(𝑀𝑖𝑑𝑃𝑜𝑖𝑛𝑡𝑌𝑟 − 𝑌𝑒𝑎𝑟) 

where 𝑀𝑎𝑥𝑅𝑒𝑑𝑢 is the reduction in perceived costs to which consumers will eventually converge and 𝑀𝑖𝑑𝑃𝑜𝑖𝑛𝑡𝑌𝑟 is the inflection point in the logistic function (informally, this is the mid-point between 2017 
and the year where further changes in the perceived costs become negligibly small).  

We can then specify specific inflection points and maximum reductions in perceived costs for different 
technologies. For instance, Graph 7 represents the evolution of the market shares, assuming the param-
eter values of Table 8.  

Graph 7  Evolution of the market shares of all new car types with decreases in perceived costs 
Percentages 

 
Source: CASMO 
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Table 8 Parameters of the logistic function 
 MaxRedu MidPointYr 

Charge sustaining hybrids 0.45 2020 
Plug-in hybrids 0.45 2020 
Battery electric 0.15 2030 
Source: own assumptions 

This evolution of the market shares is indeed what we would expect if the reduction in the perceived 
costs for hybrid vehicles evolves quickly in the next few years, and then remains stable as from 2025. 
For electric cars, the evolution corresponds to learning effects that start to take off around 2025, acceler-
ate until 2030, and stabilize around 2035.  

Graph 7 also illustrates that, while 𝑀𝑖𝑑𝑃𝑜𝑖𝑛𝑡𝑌𝑟 determines when electrified cars will start gaining sig-
nificant market shares, it is 𝑀𝑎𝑥𝑅𝑒𝑑𝑢 that determines their eventual market shares when all non-meas-
ured barriers to adoption have been overcome. In other words, we see that, under the MaxRedu we have 
assumed, fossil fuel cars continue to play a non-negligible role in 2040. This gives an idea of the chal-
lenge that lies ahead.  

One caveat to keep in mind is that, as long as the reduction in the perceived costs has not taken off, the 
inflection point and the future plateau cannot be estimated with econometric techniques.  

This implies that there are two ways to look at this alternative formulation. One possibility is to use 
expert opinions on the inflection points and the future plateaus for each technology and to use the model 
to translate those assessments in future market shares. The model can then be used to enlighten a debate 
between different experts. A different approach could be to derive inflection points and future plateaus 
that can “reconstruct” the specific timeline of future market shares projected by published studies. This 
approach thus leads to a better understanding of the underlying assumptions if those have not been 
published and makes it easier to assess the plausibility of the results.   

6.2. Expected update in the model parameters 

The analysis by Hoen and Koetse has been undertaken around 2012. As, in the meanwhile, the trade-
offs between cost price and range for electric vehicles could have changed as the result of a higher fa-
miliarity of consumers with electric and hybrid cars, an update study has been performed.19 We intend 
to update our model as soon the results of the follow-up study are publicly available.  

                                                           
19  Personal correspondence between Hoen and the author. 
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7. Conclusion 

This paper describes the structure and the key assumptions of the new car stock module of the PLANET 
model. It also projects the composition of new vehicle sales and the total car stock until 2040.  

Arguably the most striking result of this paper is that, in the central scenario, almost all substitutions 
between fuel types take place between gasoline and diesel cars. Although electric and plug-in cars be-
come increasingly competitive in terms of both fixed and variable costs, their shares in total sales remain 
very small in 2040. This stands in contrast with other results that have drawn a lot of attention such as 
BNEF (2018) but is roughly consistent with other scenarios that are based on explicit econometric mod-
elling (such as Brand et al. 2017 or Fulton et al. 2017b).  

We have argued that this is mainly due to the high values of the estimated alternative specific constants, 
which represent the part of an alternative’s utility that cannot be captured by the observed explanatory 
variables (see Section 4.3.2). 

However, given the high values of the calibrated ASC, they continue to perpetuate the low market 
shares of alternative fuels until well in the future. Sensitivity analysis (results are available on request) 
has also shown that the projected market shares are not very sensitive to changes in the cost parameters.  

The picture changes if we allow for an exogenous decrease over time of the “perceived” acquisition 
costs (for instance as the result of social learning): assuming inflection point for hybrid cars around 2020 
and for electric cars around 2030, we obtain much higher market shares. We have also found that, under 
this assumption, the market shares are much more sensitive to changes in the cost parameters.  

We have also discussed how this approach with evolving subjective costs can be used, either to en-
lighten a debate on the evolution of future costs between different experts, or to better understand the 
assumptions underlying existing alternative economic models.   

Our work has also identified several data needs. In particular, the survival model would be more accu-
rate if there were reliable and representative data on the accumulated mileages of individual cars and 
on the dates where they are effectively retired from circulation in Belgium.  



WORKING PAPER 1-19 

40 

8. References 

AUTOLENING, https://www.beste-autolening.be/rentevoet/autofinanciering-nieuwe-auto.html  (ac-
cessed on 19/07/2018). 

AXSEN, J., MOUNTAIN, D.C. and JACCARD, M.J (2009), ‘Combining stated and revealed choice  
re-search to simulate the neighbor effect: The case of hybrid-electric vehicles’, Resource and Energy 
Economics, vol. 31, nr. 3, pp. 221-238, ISSN 0928-7655 

BELDAM, BELgium DAily Mobility, http://www.beldam.be/ (accessed on 18/09/2018). 

BERCKMANS, G., MESSAGIE, M., SMEKENS, J. OMAR, N., VANHAVERBEKE, L. and VAN MIERLO, 
J. (2017), Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030, Energies 
2017, 10, 1314. 

BLOOMBERG NEW ENERGY FINANCE (BNEF) (2018), Electric Vehicle Outlook 2018, 
https://about.bnef.com/electric-vehicle-outlook/ (accessed 24 October 2018). 

BRAND, C., CLUZEL, C. and ANABLE, J. (2017), ‘Modeling the uptake of plug-in vehicles in a hetero-
geneous car market using a consumer segmentation approach’, Transportation Research Part A: Policy 
and Practice, vol. 97, pp. 121-136, ISSN 0965-8564. 

CAMBRIDGE ECONOMETRICS (2018), Low-carbon cars in Europe: A socio-economic assessment, 
https://www.camecon.com/how/our-work/fuelling-europes-future/ (accessed on 18/09/2018). 

CLEVES, M., GOULD, W.W. and MARCHENKO Y.V. (2016), An Introduction to Survival Analysis Using 
Stata, Revised Third Edition, College Station, TX, Stata Press. 

DANIELIS, R., GIANSOLDATI, M. and ROTARIS, L. (2018), ‘A probabilistic total cost of ownership 
model to evaluate the current and future prospects of electric cars uptake in Italy’, Energy Policy, 
vol. 119, pp. 268-281, ISSN 0301-4215, https://doi.org/10.1016/j.enpol.2018.04.024. 

DARGAY J., GATELY D. and SOMMER A., (2007), ‘Vehicle Ownership and Income Growth, World-
wide: 1960-2030’, The Energy Journal, vol. 28, nr 4, pp. 143-170. 

DE CLERCK, Q., VAN LIER, T., LEBEAU, P., MESSAGIE, M., VANHAVERBEKE, L., MACHARIS, C. 
and VAN MIERLO, J. (2016), ‘How Total is a Total Cost of Ownership?’, World Electric Vehicle Journal, 
vol. 8, pp. 736-747. 10.3390/wevj8040742. 

DESMET, R., HERTVELDT, B., MAYERES, I., MISTIAEN, P. and SISSOKO, S. (2008), The PLANET Model: 
Methodological Report, PLANET 1.0, Study financed by the framework convention “Activities to sup-
port the federal policy on mobility and transport, 2004-2007” between the FPS Mobility and 
Transport and the Federal Planning Bureau, Working Paper 10-08, Federal Planning Bureau, Brus-
sels. 

DUN, C., HORTON, G. and KOLLAMTHOD, S. (2015), Improvements to the definition of lifetime mileage of 
light duty vehicles, Ricardo-AEA https://ec.europa.eu/clima/sites/clima/files/transport/vehicles 
/docs/ldv_mileage_improvement_en.pdf (accessed 09 January 2019). 



  WORKING PAPER 1-19 

41 

ELEMENT ENERGY LIMITED (2013), Pathways to high penetration of electric vehicles, Final report for The 
Committee on Climate Change https://www.theccc.org.uk/wp-content/uploads/2013/12/CCC-EV-
pathways_FINAL-REPORT_17-12-13-Final.pdf (accessed 23 June 2017). 

EMISSIA, http://www.emisia.com/utilities/copert/ (accessed on 17 September 2018). 

EPPSTEIN, M.J., GROVER, D.K., MARSHALL, J.F. and RIZZO, D.M. (2011), ‘An agent-based model to 
study market penetration of plug-in hybrid electric vehicles’, Energy Policy, vol 39, nr 6, pp. 3789-
3802, ISSN 0301-4215, https://doi.org/10.1016/j.enpol.2011.04.007. 

FEDERAAL PLANBUREAU and STATBEL (2018), Demografische vooruitzichten 2017-2070 - Bevol-
king en huishoudens. February 2018. 

FEDERAL PUBLIC SRVICE FINANCE (2018), Tax survey, https://finance.belgium.be/en/figures 
_and_analysis/analysis/tax_survey (accessed on 21/09/2018). 

FEDERALE OVERHEIDSDIENST MOBILITEIT EN VERVOER (FOD) (2017), Kilometers afgelegd door 
Belgische voertuigen in 2016, https://mobilit.belgium.be/sites/default/files/kilometers_2016_nl.pdf  
(accessed on 09 January 2019). 

FRANCKX, L. (2017), Vehicle stock modelling in long term projections - Survey of the literature, Working 
Paper 08-17, Federal Planning Bureau, Brussels. 

FRANKE, T. and KREMS, J. F. (2013), ‘What drives range preferences in electric vehicle users?’, 
Transport Policy, vol. 30(C), pp. 56-62. DOI: 10.1016/j.tranpol.2013.07.005. 

FULTON, L., JENN, A. and TAL, G. (2017b), Can we reach 100 million electric cars worldwide by 2030? A 
modelling/scenario analysis, GFEI Working Paper 16 https://www.globalfueleconomy.org/data-and-
research/publications/gfei-working-paper-16 (accessed 23 June 2017). 

FULTON, L., MASON, J. and MEROUX, D. (2017a), Three Revolutions in Urban Transportation, Institute 
of Transportation Studies, University of California, Davis, Research Report UCD-ITS-RR-17-03. 
https://www.itdp.org/publication/3rs-in-urban-transport/ (accessed 23 June 2017). 

GILLINGHAM, K., ISKHAKOV, F., MUNK-NIELSEN, A., Rust, J. and SCHJERNING, B., (2015), A Dy-
namic Model of Vehicle Ownership, Type Choice, and Usage, Unpublished working paper, 
https://site.stanford.edu/sites/g/files/sbiybj8706/f/auto_equilibrium.pdf (accessed on 09 January 
2019). 

GIROD, B., VAN VUUREN, D.P., GRAHN, M., KITOUS, A., KIM, S.H., and KYLE, P. (2013a), ‘Climate 
impact of transportation A model comparison’, Climatic Change, vol. 118, pp 595-608. 
doi:10.1007/s10584-012-0663-6. 

GIROD, B., VAN VUUREN, D.P., GRAHN, M., KITOUS, A., KIM, S.H., and KYLE, P. (2013b), ‘Climate 
impact of transportation A model comparison’, Climatic Change, vol. 118, pp 595-608. 
doi:10.1007/s10584-012-0663-6. Supplementary Material (available on-line). 

GOMEZ VILCHEZ, J., HARRISON, G., KELLEHER, L., SMYTH, A. and THIEL, C. with contributions 
from LU, H. and ROHR, C. (2017), Quantifying the factors influencing people’s car type choices in Europe: 
Results of a stated preference survey, Publications Office of the European Union,  
http://publications.jrc.ec.europa.eu/repository/handle/JRC109452 (accessed on 09 January 2019). 



WORKING PAPER 1-19 

42 

GREENE, D.L. (2010), Why the market for new passenger cars generally undervalues fuel economy, OECD/ITF 
Discussion paper 2010/6, https://www.oecd-ilibrary.org/transport/stimulating-low-carbon-vehicle-
technologies/why-the-market-for-new-passenger-cars-generally-undervalues-fuel-econ-
omy_9789282102978-3-en (accessed 09 January 2019). 

GUSBIN, D. and DEVOGELAER, D. (2017), Le paysage énergétique belge à l’horizon 2050 - Perspectives à 
politique inchangée, Bureau Fédéral du Plan. https://www.plan.be/admin/uploaded 
/201710270928090.For_Energy_2017_11531_F.pdf (accessed on 09/01/2019). 

HILL, N., MORRIS, M. and SKINNER, I. (2010), SULTAN: Development of an Illustrative Scenarios Tool for 
Assessing Potential Impacts of Measures on EU Transport GHG, Task 9 Report VII produced as part of 
contract ENV.C.3/SER/2008/0053 between European Commission Directorate-General Environment 
and AEA Technology plc; see website www.eutransportghg2050.eu (accessed 23 June 2017). 

HOCKENOS, P. (2018), End of the Road: Are Diesel Cars on the Way Out in Europe?, 
https://e360.yale.edu/features/end-of-the-road-are-diesel-cars-on-the-way-out-in-europe (accessed 
on 17 September 2018). 

HOEN, A. and KOETSE, M. (2014), ‘A choice experiment on alternative fuel vehicle preferences’, Trans-
portation Research Part A, vol. 61, pp. 199-215. 

INTERNATIONAL ENERGY AGENCY (IEA) (2018), Global EV Outlook, https://www.iea.org/ 
gevo2018/ (accessed 09 January 2019). 

JENSEN, A.F., CHERCHI, E. and MABIT, S.L. (2013), ‘On the stability of preferences and attitudes be-
fore and after experiencing an electric vehicle’, Transportation Research Part D: Transport and Environ-
ment, vol. 25, pp. 24-32, ISSN 1361-9209, https://doi.org/10.1016/j.trd.2013.07.006. 

JENSEN, A.F., CHERCHI, E., MABIT, S.L. and ORTUZAR, J.D.D. (2017), ‘Predicting the Potential Mar-
ket for Electric Vehicles’, Transportation Science, vol 51, nr 2, pp. 427-440. 

KANE, M. (2018), BMW Batteries Have 15-Year Life In EVs, https://insideevs.com/bmw-batteries-have-
15-year-life-in-cars/ (accessed 25 October 2018). 

KANGUR, A., JAGER, W., VERBRUGGE, R. and BOCKARJOVA, M. (2017), ‘An agent-based model for 
diffusion of electric vehicles’, Journal of Environmental Psychology, vol. 52, pp. 166-182, ISSN 0272-4944, 
https://doi.org/10.1016/j.jenvp.2017.01.002. 

LAINE, B. and VAN STEENBERGEN, A. (2017), Tax Expenditure and the Cost of Labour Taxation - An 
application to company car taxation, Working Paper 07-17, Federal Planning Bureau, Belgium. 

LAMBROS K., MITROPOULOS, P., PREVEDOUROS, D., and KOPELIAS, P. (2017), ‘Total cost of own-
ership and externalities of conventional, hybrid and electric vehicle’, Transportation Research Procedia, 
vol. 24, pp. 267-274, DOI: 10.1016/j.trpro.2017.05.117. 

LEBEAU, K., VAN MIERLO, J., LEBEAU, P. and MACHARIS, C. (2012), A choice-based conjoint analysis 
on the market potential of PHEVs and BEVs in Flanders, World Electric Vehicle Journal, vol 5, nr 4, 
pp. 871-880, DOI: 10.3390/wevj5040871. 

LETMATHE, P. and SUARES, M. (2017), ‘A consumer-oriented total cost of ownership model for dif-
ferent vehicle types in Germany’, Transportation Research Part D: Transport and Environment, vol. 57, 
pp. 314-335, ISSN 1361-9209, https://doi.org/10.1016/j.trd.2017.09.007. 



  WORKING PAPER 1-19 

43 

LEVAY, P.Z., DROSSINOS, Y. and THIEL., C., (2017), ‘The effect of fiscal incentives on market penetra-
tion of electric vehicles: a pairwise comparison of total cost of ownership’, Energy Policy, vol. 105, 
pp. 524-533. 

LIAO, F., MOLIN, E. and VAN WEE, B. (2017), ‘Consumer preferences for electric vehicles: a literature 
review’, Transport Reviews, vol. 37, nr. 3, pp. 252-275, DOI: 10.1080/01441647.2016.1230794.  

LIU C. and LIN, Z. (2017) ‘How uncertain is the future of electric vehicle market: Results from Monte 
Carlo simulations using a nested logit model’, International Journal of Sustainable Transportation, 
vol. 11, nr. 4, pp 237-247. 

MASSIANI, J. (2013), The use of Stated Preferences to forecast alternative fuel vehicles market diffusion: 
Comparisons with other methods and proposal for a Synthetic Utility Function, Working Papers 
2013:12, Department of Economics, University of Venice “Ca’ Foscari”. http://www.unive.it/media 
/allegato/DIP/Economia/Working_papers/Working_papers_2013/WP_DSE_massiani_12_13.pdf (ac-
cessed 23 June 2017). 

MASSIANI, J. and GOHS, A. (2015), ‘The choice of Bass model coefficients to forecast diffusion for in-
novative products: An empirical investigation for new automotive technologies’, Research in Trans-
portation Economics, vol. 50, pp. 17-28, ISSN 0739-8859, https://doi.org/10.1016/j.retrec.2015.06.003. 

MAYERES, I., NAUTET, M. and VAN STEENBERGEN, A. (2010), The PLANET model - Methodological 
Report: The Car Stock Module, Working Paper 02-10, Federal Planning Bureau, Belgium. 

MULHOLLAND, E., TATTINI, J., RAMEA, K. and O’GALLACHOIR, B. (2018), ‘The cost of electrifying 
private transport - Evidence from an empirical consumer choice model of Ireland and Denmark’, 
Transportation Research Part D Transport and Environment, vol. 62, pp. 584 - 603, DOI: 
10.1016/j.trd.2018.04.010. 

NYKVIST, B., SPREI, F. and NILSSON, M. (2019),‘Assessing the progress toward lower priced long 
range battery electric vehicles’, Energy Policy, vol. 124, pp. 144-155, ISSN 0301-4215, 
https://doi.org/10.1016/j.enpol.2018.09.035. 

OECD/ITF (2017), ITF Transport Outlook 2017, OECD Publishing, Paris. http://dx.doi.org/10.1787 
/9789282108000-en. 

PLOTZ, P., JAKOBSON, N. and SPREI, F. (2017), ‘On the distribution of individual daily driving dis-
tances’, Transportation Research Part B Methodological, vol 101, pp. 213-227, DOI: 10.1016 
/j.trb.2017.04.008 

RAMEA, K., BUNCH, D.S., YANG, C., YEH., S. and OGDEN J.M. (2018), ‘Integration of behavioral  
effects from vehicle choice models into long-term energy systems optimization models’, Energy Eco-
nomics, vol. 74, pp. 663-676, ISSN 0140-9883, https://doi.org/10.1016/j.eneco.2018.06.028. 

RAUWALD, C. and SACHGAU, O. (2018), VW Says the Next Generation of Combustion Cars Will  
Be Its Last, Bloomberg https://www.bloomberg.com/news/articles/2018-12-04/vw-says-the-next-
generation-of-combustion-cars-will-be-its-last (accessed 06 December 2018). 

TRAIN. K (2009), Discrete Choice Methods with Simulation, 2nd edition, Cambridge University Press. 

UBS (2017), Electric Car Teardown - Disruption Ahead?, Report - Q- Series UBS Evidence Lab, 
https://neo.ubs.com/shared/d1wkuDlEbYPjF/ (accessed 09 January 2019). 



WORKING PAPER 1-19 

44 

VALERI, E. and CHERCHI, E. (2016), ‘Does habitual behavior affect the choice of alternative fuel vehi-
cles?’, International Journal of Sustainable Transportation, vol. 10, nr. 9, pp. 825-835, DOI: 
10.1080/15568318.2016.1163445. 

VANHAVERBEKE, L., SCHREURS, D., DE CLERCK, Q. and VAN MIERLO, J., (2017), ‘Total cost of 
ownership of electric vehicles incorporating Vehicle to Grid technology Conference’, Twelfth Interna-
tional Conference on Ecological Vehicles and Renewable Energies (EVER), DOI: 10.1109 
/EVER.2017.7935931. 

WELDON, P., MORRISSEY, P.J. and O’MAHONY, M. (2018), ‘Long-Term Cost of Ownership Compar-
ative Analysis between Electric Vehicles and Internal Combustion Engine Vehicles’, Sustainable Cities 
and Society, vol 39, DOI: 10.1016/j.scs.2018.02.024. 

WIETSCHEL, M., PLOTZ, P., KUHN, A. and GANN, T. (2013), Market evolution scenarios for electric 
vehicles. Fraunhofer Institute, Karlsruhe, Germany. https://www.isi.fraunhofer.de/content/dam 
/isi/dokumente/cce/2013/NPE_TCO_Bericht_en.pdf (accessed 09 January 2019). 

WU T., ZHAO H. and OU X. (2014), ‘Vehicle Ownership Analysis Based on GDP per Capita in China: 
1963-2050’, Sustainability, vol. 6, nr 8, pp. 4877-4899. https://doi.org/10.3390/su6084877. 

WU, G., INDERBITZIN, A., and BENING, C. (2015), ‘Total cost of ownership of electric vehicles com-
pared to conventional vehicles: A probabilistic analysis and projection across market segments’, En-
ergy Policy, vol. 80, pp. 196-214. 

YAMAMOTO, T., MADRE, J.-L., and KITAMURA R. (2004), ‘An analysis of the effects of French vehicle 
inspection program and grant for scrappage on household vehicle transaction’, Transportation  
Research Part B: Methodological, vol. 38, nr. 10, pp. 905-926, ISSN 0191-2615, 
https://doi.org/10.1016/j.trb.2004.02.001. 



  WORKING PAPER 1-19 

45 

Annexes 

Annex A: Evolution of market shares and costs between 2012 and 2017 

In this annex, we discuss in more detail the Belgian new car market between 2012 and 2017. 

We will limit ourselves here to diesel, gasoline and electric cars. Indeed, in the case of hybrid cars, mar-
ket shares are too small and volatile to say anything meaningful. The market shares for LPG and CNG 
are also extremely small, and, contrary to electric cars, we have no reasons to expect fundamental 
changes in the foreseeable future. 

Let us first consider the evolution of the costs. 

From Graph 8, we see that, in the “big” segment, the average variable costs of diesel cars have slightly 
increased, and those of gasoline cars have decreased since 2015. For the other size classes and for electric, 
there are no noteworthy changes. It can be verified that these mainly reflect changes in the annual cir-
culation tax – see Graph 9. 

 

Graph 8  Variable costs in period 2013-17  
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Graph 10 shows that the average licence taxes have increased more for gasoline and electric cars than 
for electric cars. However, compared to total acquisition costs, these changes are not large enough to 
result in a meaningful change in these costs – see Graph 11. 

 

Graph 9  Annual circulation tax in period 2013-17  
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Graph 10 Licence tax in period 2013-17  
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Let us now have a look at the evolution of the market shares of new cars. 

Graph 12 and Graph 13 confirm an important decrease in the market shares of diesel cars, especially in 
the “medium” segment, in parallel with an important uptake in the share of “small” gasoline cars. Alt-
hough these trends were already visible before 2015, there is a clear acceleration as from 2015 on. 

These are higher than what we would expect a priori from the changes in the circulation tax only, and 
probably reflect a broader concern amongst car buyers that the general policy climate has become less 
favourable to diesel. 

As illustrated in Graph 14, the market shares of electric cars remain very small (around 0.5% over all 
size classes), even if we can observe some growth in the medium and the big segments. A more detailed 
analysis of the data20 in the “big electric” segment has revealed that this is too a large extent a “Tesla 
effect”. 

                                                           
20  Details are available from the author on request. 

Graph 11 Total acquisition costs in period 2013-17  
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Graph 12  Diesel market shares (sales) in period 2013-17 
Percentages  
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Graph 13  Gasoline market shares (sales) in period 2013-17 
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Graph 14  Electric cars market shares (sales) in period 2013-17 
Percentages 

Source: CASMO 
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Annex B: Costs per COPERT class in 2017 

It is also insightful to compare the costs of diesel, gasoline, hybrid and electric cars in 2017. 

We start with the acquisition costs. 

Graph 15, Graph 16 and Graph 17 show that, in all size classes, the total acquisition cost of electric and 
hybrid cars is still higher than for gasoline and diesel cars. In the size segment “big”, the acquisition 
costs are about twice as high as for diesel cars. The differences are slightly less pronounced for the 
“medium” and “small” cars but remain non-negligible. It should be noted that, in the size class “big”, 
the cost differences between gasoline and hybrid cars is also rather small. In this size class, diesel hy-
brids and plug-in hybrids even have a slight cost-advantage compared to gasoline cars. However, given 
that the cost estimates for hybrid cars are based on a much smaller data set than for the other fuel types, 
we should be very careful in drawing any strong conclusions from this. 

In the “small” segment, the differences between diesel and gasoline cars have become very small. In the 
“medium” segment, diesel cars are more expensive, while the opposite is true for the “big” segment – a 
more detailed analysis of the data has shown that this largely attributable to the big share of premium 
cars in the “big gasoline” segment. 

Finally, although the purchase cost of electric cars is higher than for hybrids and plug-in hybrids in the 
size segments “small” and “big”, this is not the case in the size segment “medium”, where diesel hybrid 
and plug-in hybrids are more expensive than electric cars. 

 

Graph 15  Acquisition costs small cars in 2017  
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Graph 16  Acquisition costs medium-sized cars in 2017  
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Graph 17  Acquisition costs big cars in 2017  
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Let us now consider the variable costs. 

Graph 18, Graph 19 and Graph 20 show that, in all size classes, electric cars, plug-in hybrids and gasoline 
hybrids have lower variable costs than gasoline and diesel cars. Diesel cars now have higher variable 
costs than gasoline cars. As discussed before, this reflects important changes in the tax policy vis-à-vis 
diesel. Diesel hybrids generally have rather high variable costs, even when compared to gasoline and 
diesel cars. 

 

 

 

Graph 18 Variable costs small cars in 2017  
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Graph 19 Variable costs medium-sized cars in 2017  
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Given that electric cars and hybrid cars are, as a general rule21, more expensive than conventional fuels 
in terms of acquisition costs, but have lower running costs, the natural next question is how they com-
pare to other cars in terms of total cost of ownership (TCO). The Hoen-Koetse model does not refer 
explicitly to the TCO: the purchase costs and the monthly user cost enter directly the cost function, 
without reference to the expected lifetime and/or the discount rate. However, we would expect that 
respondents have (implicitly) an estimate in mind of these variables, given their household characteris-
tics. 

We are addressing this in detail in a forthcoming paper, which we briefly summarize here. The key 
result of this paper is that the time horizon used by the consumer is the key parameter. 

Indeed, with an expected lifetime of 15 years and a private discount rate is 1.5%, medium electric cars 
are close to cost-competitive with gasoline cars. Compared to diesel, the TCO of electric cars is clearly 
smaller in the “medium” segment, but much higher in the segment “big” – remember that we have 
already pointed out above that “big” gasoline and electric cars are both mostly in the premium market. 
Finally, in the category “small”, electric and diesel cars are almost on par. For diesel hybrid cars, the 
overall picture is not clear-cut but gasoline hybrids and plug-in hybrids are always amongst the cheaper 
car types for each size class. 

However, there are several sources of uncertainty regarding the relevant value for the expected lifetime: 

– Electric and hybrid cars can be expected to have a different use profile as diesel and gasoline cars. 
Indeed, because of their high fixed and low variable costs and limited autonomy, most existing elec-
tric cars are mostly suited for use profiles who drive a lot on an annual basis but whose individual 
trips are typically relatively short and who have readily access to overnight charging – think of 

                                                           
21  Diesel hybrids are an exception: they have both higher acquisition and higher monthly costs. 

Graph 20 Variable costs big cars in 2017  
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service cars. This should lead to a shorter lifetime in years. However, electric cars are also less subject 
to maintenance and wear and tear, and this should lead to a longer lifetime. The net effect on their 
expected lifetime is not yet clear: electric cars have not yet been long enough on the market to yield 
useful data. 

– Very little data exist on the economic lifetime of batteries and their potential applications in a possi-
ble second-hand market. Moreover, this is an area where technology is evolving very quickly.  

– Greene (2010) has argued that most consumers overvalue the acquisition cost of cars compared to 
variable costs when buying a car. In line with this, Element Energy Ltd (2013) assume consumers 
typically consider pay-back periods of four years, which is indeed much smaller than any empirical 
estimate of a car’s economic lifetime. 

Further analysis has confirmed that, if consumers have a time horizon of 4 years, diesel, gasoline and 
hybrid gasoline cars perform best, and have broadly comparable TCOs. With such a very short mental 
time horizons, electric cars are at a clear competitive disadvantage. However, for the size segments 
“small” and “medium”, hybrid gasoline cars remain relatively competitive from a TCO perspective. 
Therefore, consumer myopia alone cannot explain the very low market shares for hybrid gasoline cars 
in Belgium in the reference years. 

This confirms our hypothesis that, in the current market context, the main barrier to the adoption of 
electric cars is not their total cost of ownership. Other elements appear to be crucial, some of which are 
easily quantifiable (such as the expected autonomy of an electric car or the availability of a charging 
infrastructure), others less (such as consumers' conservatism and range anxiety). 

The very low penetration rate of gasoline hybrid and plug-in hybrids is especially puzzling, given their 
TCO. However, as discussed in Section 3.4, the cost estimates for hybrid cars are more speculative than 
for the other fuel types and we need to be very careful in our discussion of the potential for this power-
train. 
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Annex C: Evolution of costs and range 

Let us first consider the changes over time of the cost parameters and the range for electric cars. 

Graph 21 shows that monthly costs for electric cars have fluctuated in the period that was used for the 
estimation of the model (mainly due changes in the traffic tax) but are assumed to grow steadily during 
the projection period: by 7% between 2018 and 2040 for “big” electric cars, for instance. It can be verified 
that this is mainly driven by increases in the fuel costs. 

 

 

Graph 21 Evolution of the variable costs of electric cars  
EURO/month 

 
 

Source: CASMO 

0

50

100

150

200

250

300

350

400

2013 2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035 2037 2039

big medium small



WORKING PAPER 1-19 

56 

 

We have to keep in mind that the periodic fuel cost reflects not only changes in the cost per km, but also 
changes in the annual mileage (which grow proportionally for all powertrains). Therefore, we single 
out the evolution of the fuel costs per km of electric vehicles in Graph 22. This cost increases by a bit 
more than 3% between 2020 and 2030, and then remains on a plateau until 2035, after which there is a 
small decrease. Note that the consumption of electricity per km is assumed to remain constant over this 
period – the evolution of the cost per km is entirely driven by changes in the price of electricity. 

Finally, as shown in Graph 23 and Graph 24, the model assumes a steady decline for the purchase costs 
of electric vehicles combined with an increase in the autonomy of electric vehicles. 

Graph 22 Evolution of the fuel cost of electric cars  
EURO per km 
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Graph 23 Evolution of the purchase cost of electric cars  
1000 EURO 
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Graph 24 Evolution of the autonomy of electric cars 
km 

 
Source: CASMO 
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We can now compare this with the evolution of the costs for diesel and gasoline cars. 

As shown in Graph 25 and Graph 26, the model assumes an important increase in the monthly costs of 
diesel cars (around 26% for “big” cars by 2040), combined with an essentially constant purchase cost. It 
can be verified that, after the increase in the circulation tax in 2015, the increase in monthly costs is 
essentially driven by the increase in the fuel costs. Graph 27 shows that the fuel cost per km steadily 
increases between 2018 and 2040, by approximately 62%. 

 
 

 

Graph 25 Evolution of the variable costs of diesel cars 
EURO/month 
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Graph 26 Evolution of the purchase costs of diesel cars  
1000 EURO 
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As shown in Graph 28, the model assumes a steady increase in the monthly costs of gasoline cars after 
an initial decrease: between 2020 and 2040, monthly costs are assumed to increase with 18% for “big” 
cars, for instance. It can be verified that this is due to (a) the decrease in the circulation tax in 2015, 
(b) the increase in the fuel costs as from 2020 on. Graph 29 confirms an important increase in the fuel 
cost per km between 2020 and 2040 (by 46%). 

 

 

Graph 27 Evolution of the fuel cost of diesel cars 
EURO per km 
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Graph 28 Evolution of the variable costs of gasoline cars  
EURO/month 

  
Source: CASMO 
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As shown in Graph 30, the purchase cost for gasoline cars is also assumed to stay essentially constant. 

 

 

Graph 29 Evolution of the fuel cost of gasoline cars  
EURO/km 

  
Source: CASMO 
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Graph 30 Evolution of the purchase costs of gasoline cars 
1000 EURO 

  
Source: CASMO 
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