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Abstract - This paper proposes a new model to account for unobserved heterogeneity in empirical mod-
elling. The model extends the well-known Finite Mixture (or Latent Class) Model by using the Johnson 
family of distributions for the component densities. Due to the great variety of distributional shapes 
that can be assumed by the Johnson family, the method does not impose the usual a priori assumptions 
regarding the type of densities that are mixed. As a consequence, the component densities are allowed 
to vary over a wide range of shapes as measured by the skewness and kurtosis parameters. By lifting 
the assumptions regarding the shape of the component densities, the method generalizes the Finite 
Mixture Model to modelling unobserved heterogeneity in distribution. The method has been imple-
mented in R. This paper outlines the algorithm to estimate the parameters of a mixture of Johnson dis-
tributions and provides a proof of principle that the method is feasible and a potential improvement 
over current latent class modelling practice. The method has not yet been tested for a mixture of regres-
sion models, which will be an obvious next step in turning it into a practical research tool. 
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Executive summary 

With the increasing availability of micro data in many fields of applied research, finite mixture models 
(FMM) are becoming increasingly popular as a tool to model unobserved heterogeneity between sub-
jects. FMMs (also known as Latent Class Models, LCM) are based on the assumption that the observa-
tions in a sample derive from an (unknown) number of heterogeneous subgroups or classes, and allow 
for the estimation of the parameters by subgroup. They have been used in economics to analyze health 
care utilization and expenditures, labour supply, productivity analysis, and market segmentation, 
among other topics. The models are also used extensively in applied research areas such as biology, 
psychology, biostatistics etc. The unobserved heterogeneity modeled with FFMs usually pertains to the 
mean of the distribution, although the variance has also been modelled (sometimes implicitly, as in the 
case of the gamma distribution). The current practice in applied economic research amounts to choosing 
a distributional form (normal, lognormal, gamma, Poisson, etc.) for the components, usually based on 
a priori considerations regarding the support and the shape of the population distribution. 

A drawback of this approach is that it places a priori restrictions on the nature of the unobserved heter-
ogeneity in at least two ways. First, the choice of the distribution is in general somewhat arbitrary and 
as a rule not tested against a more general (unrestricted) alternative. Second, while the ‘true’ number of 
latent classes is in principle unknown, it is also routinely assumed that the mixed distributions are of 
one kind. That is, the mixed components only differ from each other in terms of the parameters of the 
chosen distribution but not in terms of the probability density functions themselves. 

This paper addresses these problems by lifting some of these implicit assumptions. This is achieved by 
postulating a flexible form for the component distributions. Several such flexible forms have been pro-
posed and studied long ago, such as the Pearson and Johnson families, among others. Both families 
share the property that they can assume a wide variety of shapes depending on the value of their four 
parameters. In fact, most commonly used distributions are special cases of both families. The paper 
outlines an algorithm that can be used to estimate the parameters of a mixture of Johnson distributions 
and provides a proof of principle that the method is feasible and a potential improvement over current 
latent class modelling practice. 

The method has been tested using data generated from different distributions, chosen to cover a wide 
range of combinations of skewness and kurtosis. The first results are encouraging. The method gener-
ally converges in about the same number of iterations as standard models that mix normal or gamma 
distributions. More importantly, when the data are generated from mixed distributions that differ sub-
stantially from the standard assumptions (identical component densities and ‘regular’ skewness and 
kurtosis values), the mixture of Johnson distributions generally fits the data better than the standard 
models. 

The method has not yet been tested for a mixture of regression models, which will be an obvious next 
step in turning it into a practical research tool. 
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Synthèse 

Grâce à la disponibilité croissante de microdonnées dans de nombreux domaines de la recherche appli-
quée, les modèles de mélange fini (finite mixture models ou FMM) deviennent un outil de plus en plus 
populaire pour modéliser l’hétérogénéité non observée entre sujets. Les FMM, également appelés mo-
dèles de classe latente (latent class models ou LCM) partent de l’hypothèse que les observations d’un 
échantillon proviennent d’un nombre (inconnu) de sous-groupes ou classes hétérogènes et permettent 
d’estimer les paramètres par sous-groupe. Ils ont été utilisés dans le domaine économique pour analyser 
notamment l’utilisation et les dépenses de soins de santé, l’offre de travail, la productivité et la segmen-
tation de marché. Les modèles sont également abondamment utilisés dans d’autres domaines de la re-
cherche appliquée comme la biologie, la psychologie, la biostatistique, etc. L’hétérogénéité non observée 
modélisée à l’aide des FMM porte habituellement sur la moyenne de la distribution, même si la variance 
a également été modélisée (parfois de manière implicite, comme dans le cas de la distribution gamma). 
La pratique actuelle en recherche économique appliquée revient à choisir une forme de distribution 
(normale, log-normale, gamma, Poisson, etc.) pour les composants, généralement sur la base de consi-
dérations a priori relatives à l’étendue et à la forme de la distribution de population. 

Un inconvénient de cette approche est qu’elle impose de deux manières au moins des restrictions a 
priori quant à la nature de l’hétérogénéité non observée. Tout d’abord, le choix de la distribution est 
généralement assez arbitraire ; elle n’est habituellement pas confrontée à une alternative plus générale 
(moins restrictive). Deuxièmement, alors que le nombre « réel » de classes latentes est en principe in-
connu, on suppose systématiquement que les composants suivent la même distribution. En d’autres 
termes, on suppose que les composants mixtes ne diffèrent entre eux qu’en ce qui concerne les para-
mètres de la distribution choisie, mais pas en ce qui concerne la distribution elles-même. 

Cette étude aborde ces problèmes en assouplissant certaines de ces hypothèses implicites. Elle se base 
sur une forme flexible pour les distributions de composants. Plusieurs formes flexibles ont été proposées 
et étudiées par le passé, dont les familles Pearson et Johnson. Ces familles ont ceci en commun qu’elles 
peuvent adopter des formes très diverses en fonction de la valeur de leurs quatre paramètres. En réalité, 
la plupart des distributions utilisées couramment sont des cas spéciaux de ces deux familles. L’étude 
décrit un algorithme pouvant être utilisé pour estimer les paramètres d’un mélange de distributions 
Johnson et donne une preuve de principe que la méthode fonctionne et constitue une possible amélio-
ration par rapport à la pratique courante pour les modèles de classe latente. 

La méthode a été testée sur des données générées à partir de différentes distributions choisies pour 
couvrir un large éventail de combinaisons d’asymétrie et d’aplatissement. Les premiers résultats sont 
encourageants. La méthode converge pratiquement aussi vite que les méthodes standard qui mélangent 
des distributions normales ou gamma. Plus important encore, lorsque les données sont générées à partir 
de distributions mixtes qui diffèrent sensiblement des hypothèses standard (distributions de compo-
sants identiques et valeurs ‘régulières’ d’asymétrie et d’aplatissement), le mélange de distributions 
Johnson donne généralement de meilleurs résultats (qualité de l’ajustement) que les modèles standard. 

La méthode n’a pas encore été testée pour un mélange de modèles de régression. C’est naturellement 
l’étape qu’il faudra franchir pour en faire un instrument de recherche pratique. 
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Synthese 

Met de toenemende beschikbaarheid van microdata voor empirisch onderzoek worden ‘finite mix-
ture‘ modellen (FMM) een steeds populairder werktuig om niet-geobserveerde heterogeniteit tussen 
subjecten te modelleren. FMMs (die ook ‘latent class’ modellen worden genoemd, afgekort LCM) gaan 
uit van de veronderstelling dat de observaties in een steekproef afkomstig zijn uit een (onbekend) aantal 
heterogene subgroepen of klassen, en laten toe de parameters van deze subgroepen te schatten. Ze zijn 
in diverse domeinen van het economisch onderzoek gebruikt, onder meer voor de analyse van het ge-
bruik en de uitgaven van medische zorg, het arbeidsaanbod, productiviteit, en marktsegmentatie. De 
modellen worden ook frequent toegepast in andere onderzoeksgebieden zoals biologie, psychologie, 
biostatistiek en zo verder. De niet-geobserveerde heterogeniteit die wordt gemodelleerd met FMMs 
heeft gewoonlijk betrekking op de verwachtingswaarde van de verdeling, hoewel soms ook de variantie 
wordt gemodelleerd (soms impliciet, zoals in het geval van de gamma-verdeling). De huidige praktijk 
in toegepast economisch onderzoek komt neer op het kiezen van een kansverdeling (normaal, lognor-
maal, gamma, Poisson, enz.) voor de componenten gebaseerd op a priori overwegingen betreffende het 
domein en de vorm van de populatieverdeling. 

Een nadeel van deze benadering is dat ze a priori beperkingen oplegt over de aard van de niet-geobser-
veerde heterogeniteit, op tenminste twee manieren. Ten eerste is de keuze van de verdeling over het 
algemeen nogal arbitrair en wordt ze gewoonlijk niet getest tegen meer algemene (minder restrictieve) 
alternatieven. Ten tweede wordt, los van de vraag hoeveel latente klassen er in werkelijk bestaan, stel-
selmatig verondersteld dat de componenten dezelfde verdeling volgen. Met andere woorden, men ver-
onderstelt dat de componenten enkel van elkaar verschillen wat de parameters van de verdeling betreft, 
maar niet in termen van de verdeling zelf. 

Deze paper poogt deze problemen aan te pakken door sommige van de gebruikelijke veronderstellin-
gen te versoepelen. Dit wordt bereikt uit te gaan van een flexibele vorm voor de component-verdelingen. 
Diverse zulke flexibele vormen zijn in het verleden bestudeerd, waaronder de zogenaamde Pearson en 
Johnson families van verdelingen. Deze families delen de eigenschap dat ze, afhankelijk van de waarden 
van hun parameters, heel diverse vormen kunnen aannemen. Bovendien zijn de verdelingen die cou-
rant worden gebruikt speciale gevallen van beide families. De paper beschrijft een algoritme waarmee 
de parameters van de Johnson familie van verdelingen kunnen worden geschat en levert een ‘proof of 
principle’ dat de methode werkt en een potentiële verbetering is ten opzichte van de huidige gangbare 
praktijk voor latente klassen-modellen. 

De methode werd getest op gegevens gegenereerd met verschillende verdelingen die een groot bereik 
van scheefheid en kurtosis omvatten. De eerste resultaten zijn bemoedigend. De methode convergeert 
ongeveer even snel als de standaardmethoden met een mix van normale of gamma-verdelingen. Nog 
belangrijker, wanneer de data werden gegenereerd met verdelingen die ver afwijken van de standaard-
veronderstellingen (identieke componentverdelingen en ‘reguliere’ scheefheid en kurtosis), geeft de 
nieuwe methode in het algemeen betere resultaten (‘goodness-of-fit’) dan de standaardmodellen. 

De methode werd nog niet getest in de context van een mix van regressiemodellen. Dit is de voor de 
hand liggende volgende stap om ze bruikbaar te maken als een praktisch onderzoeksinstrument. 
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1. Introduction 

With the increasing availability of micro data in many fields of applied research, finite mixture models 
(FMMs) are becoming increasingly popular as a tool to model unobserved heterogeneity between sub-
jects (McLachlan and Peel 2000). FMMs (also known as Latent Class Models, LCMs) have been used in 
economics to analyze health care utilization and expenditures (see e.g. Deb and Holmes 2000, Jiménez-
Martín, Lebeaga, and Martínez-Granado 2002) , labour supply (Pacifico 2012), productivity analysis (De 
Vries and Koetter 2011), ordered choice (Greene et al. 2008), market segmentation (Wedel and Kama-
kura 2000) and many other topics. The models are also used extensively in applied research areas such 
as biology, psychology, biostatistics etc. The unobserved heterogeneity modeled with FFMs usually 
pertains to the mean of the distribution, although the variance has also been modelled (sometimes im-
plicitly, as in the case of the gamma distribution). The current practice in applied economic research 
amounts to choosing a distributional form (normal, lognormal, gamma, Poisson, etc.) usually based on 
a priori considerations regarding the support and the shape of the population distribution. 

A drawback of this approach is that it places a priori restrictions on the nature of the unobserved heter-
ogeneity in at least two ways. First, the choice of the distribution is in general somewhat arbitrary and 
as a rule not tested against a more general (unrestricted) alternative. Second, while the ‘true’ number of 
latent classes is in principle unknown, it is also routinely assumed that the mixed distributions are of 
one kind. That is, the mixed components only differ from each other in terms of the parameters of the 
chosen distribution but not in terms of the probability density functions themselves. 

This paper addresses these problems by lifting some of these implicit assumptions. This is achieved by 
postulating a flexible form for the component distributions. Several such flexible forms have been pro-
posed and studied long ago, such as the Pearson and Johnson families, among others (see N. L. Johnson 
1949, Johnson, Kotz, and Balakrishnan 1994, Kendall and Stuart 1969). Both families share the property 
that they can assume a wide variety of shapes depending on the value of their four parameters. In fact, 
most commonly used continuous distributions are special cases of both families. The Pearson family, 
for instance, contains the normal, lognormal, t, gamma, beta and F distributions as special cases. This 
paper outlines an algorithm that can be used to estimate the parameters of a mixture of Johnson distri-
butions and provides a proof of principle that the method is feasible and a potential improvement over 
current latent class modelling practice. 

The remainder of the paper gives a brief overview of the characteristics of the Johnson family in sec-
tion 2, followed by an outline of the estimation algorithm (section 3). Section 4 provides some Monte 
Carlo experiments demonstrating the feasibility of the procedure and comparing the results with two 
commonly used alternatives. Section 5 concludes and discusses the next research steps. 
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2. The Johnson family of distributions 

The Johnson family of distributions (N. L. Johnson 1949) is obtained by a set of transformations of a 
standard normal variable. Each of the four types corresponds with one particular element of the set, the 
general form of which is: 

ܼ = ߛ  + ݂ ߜ ൬ܺ − ߣߦ ൰ 

ܼ =  ܰሾ0, 1ሿ 
(1) 

The transformations, which are shown here as transformations to the standard normal variable Z, are 
defined by the particular specification of the function f(.), as follows: 

:ܰܵ ݁ݕܶ ݂ሺ. ሻ = ሺ. ሻ (2) 

 

:ܮܵ ݁ݕܶ ݂ሺ. ሻ = lnሺ. ሻ (3) 

 

:ܤܵ ݁ݕܶ ݂ሺ. ሻ = ln ൬ ܺ − ߦߦ + − ߣ  ܺ൰ (4) 

 

:ܷܵ ݁ݕܶ ݂ሺ. ሻ = sinhିଵ ൬ܺ − ߣߦ ൰ (5) 

Type SN is simply the normal distribution (transformed only by a location and scale parameter), while 
the SL transformation produces the lognormal. Types SB (‘bounded’) and SU (‘unbounded’) refer to the 
support of the transformed variable, which is [ξ, ξ+λ] for the former and (-∞, +∞) for the latter. The 
distributions can be characterized (apart from the location and scale parameters) by the skewness (β1) 
and kurtosis (β2) values they can accommodate. In fact, in the (β1, β2) plane, the SB and SU distributions 
occupy a region of values separated by the SL curve (which is a limiting distribution of both). The nor-
mal distribution in turn is a limiting case of the lognormal at the (β1 = 0, β2 = 3) point. 

The wide range of (β1, β2) values covered by the Johnson family implies a great variety of distributional 
shapes, making it an ideal choice to model heterogeneity in distribution without the need to impose 
strong a priori assumptions. The same objective could be achieved using the Pearson family, which 
produces very similar distributions for a given choice of (β1, β2) (Kendall and Stuart 1969). The choice 
for the Johnson family in this paper was made for convenience: the software we used (R) currently does 
not provide a weighted maximum likelihood estimator for the Pearson family, while it does for the 
Johnson family. 
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3. An algorithm to combine Johnson distributions in a finite 
mixture model 

Latent class models are composed of two elements: a number (K) of component distributions and a 
‘mixing distribution’ that weighs each component. The mixing distribution can be viewed as a multino-
mial distribution over K possible outcomes. The combined distribution can be formalized as (we follow 
the notation of Leisch 2004): 

ℎሺݔ|ݕ, ߰ሻ =  ,ݔ|ݕ݂ሺߨ ሻߠ
ୀଵ  

ߨ ≥ 0,  ߨ
ୀଵ =  1 

(6) 

where 
y = a dependent variable with conditional density h; 
x = a vector of independent variables; 
πk = the prior probability of component k; 
θk = the component-specific parameter vector of the density f; and 
ψ = (π1 , …,  πK, θk , …, θK) is the vector of all model parameters. 

Since class membership is unknown, the πik (the probability that observation i is a member of component 
k) values have to be estimated together with the parameters of the component distributions. This is done 
using the ‘Expectation-Maximization’ (EM) algorithm (Dempster, Laird, and Rubin 1977), which iterates 
over two steps until convergence. In the E-step, the class membership probabilities are estimated taking 
the parameters of the component distributions as given. In the M-step, the parameters of the component 
distributions are estimated for given (current) values of the group membership probabilities. This step 
is essentially a weighted maximum likelihood estimate, with the group membership probabilities as 
weights. The two steps are repeated until convergence. 

The EM estimation procedure needs to be adapted slightly in the case of a mixture of (potentially) dif-
ferent component distributions, since the probability density functions, which are the elements of the 
likelihood function, differ between components and are unknown. We propose to add a ‘selection’ step 
to the EM algorithm, which selects the component distribution based on the current value of the 
weights. This can be achieved by estimating the parameters of the Johnson SU and SB densities1 and 
selecting the type of distribution which fits the observations best (based on the value of the likelihood 
function or the Akaike or Bayesian Information Criteria). Since the weighted ML parameters must be 
estimated in the ‘selection’ step, the solution with the maximum likelihood immediately produces the 
M-step result. Consequently, the ‘selection’ step automatically produces the M-step. 

                                                           
1  There should be no need to estimate the SL and SN subtypes since they are limiting forms of SU and SB. As a consequence, 

SL and SN can be approximated arbitrarily closely by either of these distributions. 



  WORKING PAPER 14-17 

7 

It should be noted that the procedure described above can, in principle, be used to combine any number 
of different component distributions. These distributions need not be restricted to the Johnson (or any 
other) family. The advantage of using the Johnson family is that, due to its flexible form, a great variety 
of distributions can be emulated without having to try them all 2. Whichever combination of distribu-
tions is used, the proposed generalization modifies equation (6) to: 

ℎሺݔ|ݕ, ߰ሻ =  ߨ ݂ሺݔ|ݕ, ሻߠ
ୀଵ  

ߨ ≥ 0,  ߨ
ୀଵ =  1 

(7) 

A general problem in statistical modelling pertains to the identifiability of the model parameters. This 
is particularly relevant in the case of mixture models because of their great flexibility. Early work in this 
area (Teicher 1967) provided a condition for ‘strict identifiability’, but this condition turned out to be 
too strict and was later relaxed (see Allman, Matias, and Rhodes 2009). In fact, the general identifiability 
of mixtures of many different distribution families has been established in the meantime, such as for the 
X², Pareto and power function distributions (Chandra 1977), the exponential (Henna 1994), log-gamma 
and inverse log-gamma distributions (Atienza, Garcia-Heras, and Muñoz-Pichardo 2006) and even mix-
tures of components of different types such as the lognormal, gamma and Weibull distributions (Ati-
enza, Garcia-Heras, and Muñoz-Pichardo 2006). Since most of these distributions are special cases of 
the Johnson family, one might conjecture that mixtures of Johnson distributions are also identifiable. 
This conjecture, however, remains to be investigated. 

An issue related to identifiability is the problem of overparameterization, which is again a serious con-
cern in the case of mixture models. Simply put, any data set can be fit arbitrarily closely given enough 
free parameters in the model. This is the rationale for imposing a penalty for additional parameters in 
goodness-of-fit statistics such as the AIC and BIC. In the case of the Johnson distribution, only two 
additional parameters are introduced relative to standard models such as the normal or gamma FFMs, 
so the risk of over-fitting does not appear to be very great relative to the gain in flexibility. 

                                                           
2  In fact the ‘flexmix’ package does allow the user to combine different distributions, but these have to be specified when the 

function is called. 
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4. A Monte Carlo experiment 

The FMM with Johnson distributions has been implemented using the ‘flexmix’ package in R. This pack-
age allows users to define their own M-step, which we have extended with a ‘selection’ step as explained 
above. The Johnson distribution has been implemented in several R packages, but only R´s ‘SuppDist’ 
package provides a weighted maximum likelihood routine (other R packages only offer method of mo-
ments estimators of the parameters). The current version of the package only implements the Johnson 
SU and SB types but this should not be a matter of great concern, as explained in footnote 1. 

With the Johnson_M-step defined for the ‘flexmix’ package, all the necessary R code was available to 
put the ‘Johnson Finite Mixture Model’ (J-FFM) to the test. In what follows we have restricted ourselves 
to estimating the parameters of various mixtures of distributions, without trying to estimate mixtures 
of regression models (so there are no independent variables x in equation (7)). This will be the obvious 
next step in the application of the model. For now, we just provide a proof of principle that the method 
is feasible and has the potential to outperform the current practice of mixing a number of a priori chosen 
and identical distributions. 

To test the model, we have generated data from five known distributions and tested whether the John-
son FFM is capable of reproducing the shape of the mixed distributions and how the model fit compares 
to a standard mixture of normal and gamma distributions. Draws of 100 pseudo random numbers with 
different shapes of three population component distributions have been generated and estimated using 
the Johnson FFM and normal/gamma FFMs 3. The population parameters were chosen such that the 
skewness (β1) and kurtosis (β2) parameters cover a suitably wide range of values in the (β1, β2) plane 
that contains commonly used distributions such as normal, t, gamma, lognormal, beta and F distribu-
tions. Five sets of (β1, β2) were selected (see Table 1). The random numbers were drawn from Pearson 
distributions (whose types correspond to the common distributions mentioned earlier).  

Table 1 Skewness and kurtosis values of the component distributions 
 β1 β2 

Normal 0 3 
F 4 51 
Pearson Type IV 3 39 
Beta 6 39 
Lognormal 4 27 

Figure 1 illustrates the Pearson types in a (β1, β2) grid and highlights the five selected distributions used 
in the experiment. The five skewness/kurtosis pairs for each of the three component distributions result 
in 35 different data generating processes (DGPs). The capacity for each FMM to estimate the DGP is 
evaluated by the Bayesian Information Criterion (BIC), a measure based on the (negative) log-likelihood 
with a penalty for the number of parameters used in the estimation process (increasing the number of 
parameters improves the fit, so the correction is needed to avoid overfitting, see section 3). This is 

                                                           
3  The estimation process may not converge for every model and every random draw, and converged solutions may differ 

between draws since the likelihood function may converge to different local maxima. Convergence may also depend on the 
sample size. This needs to be investigated further. 
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particularly relevant in the current experiment, as the Johnson SU and SB distributions have four pa-
rameters, whereas the normal and gamma distributions only have two. 

 

The estimation results are presented in Table 2. Each row of the table represents a different DGP, as 
explained above. The first line is the benchmark of a mixture of three normal distributions, while sub-
sequent lines show combinations of the five selected component distributions. The columns on the left 
side of the table show the input parameters of the DGPs, and the columns on the right show the BIC 
value for the fitted models (three normal, three gamma and three Johnson distributions respectively). It 
should be obvious that the three Johnson distributions need not be of the same type, since this is pre-
cisely the feature that provides the flexibility for which the method is proposed. 

 

Figure 1 Pearson distributions in the (β1, β2) plane 
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Table 2 Goodness of fit for selected DGPs estimated with mixtures of normal, gamma and Johnson distributions 
Data Generating Process Mixture model 

Component 1 Component 2 Component 3 3 normal 3 Gamma 3 Johnson 

β1 β2 β1 β2 β1 β2 BIC BIC BIC 

0 3 0 3 0 3 1664.0 1660.8 1694.1

0 3 0 3 4 51 1599.3 1597.0 1591.2

0 3 0 3 3 39 1677.9 1677.5 1669.6

0 3 0 3 6 39 1711.4 1704.2 1417.1

0 3 0 3 4 27 1703.5 1700.9 1578.9

0 3 4 51 4 51 1656.0 1553.7 1481.8

0 3 4 51 3 39 1652.5 1645.2 1599.1

0 3 4 51 6 39 1715.8 1711.7 1391.2

0 3 4 51 4 27 1576.4 1569.7 1478.9

0 3 3 39 3 39 1652.5 1646.6 1628.8

0 3 3 39 6 39 1720.2 1717.4 1490.2

0 3 3 39 4 27 1643.8 1632.9 1584.0

0 3 6 39 6 39 1726.0 1723.5 1735.2

0 3 6 39 4 27 1721.0 1722.0 1450.5

0 3 4 27 4 27 1493.3 1433.0 1391.5

4 51 4 51 4 51 1569.5 1673.8 1542.8

4 51 4 51 3 39 1652.9 1503.1 1457.7

4 51 4 51 6 39 1706.9 1695.9 1162.9

4 51 4 51 4 27 1462.2 1462.7 1502.0

4 51 3 39 3 39 1685.1 1680.7 1553.4

4 51 3 39 6 39 1750.9 1742.7 1421.5

4 51 3 39 4 27 1702.8 1693.4 1494.7

4 51 6 39 6 39 NC 4931.4 3259.3

4 51 6 39 4 27 1705.7 1698.0 1227.9

4 51 4 27 4 27 1700.6 1691.4 1283.1

3 39 3 39 3 39 1674.1 1671.2 1572.9

3 39 3 39 6 39 1684.8 1676.4 1397.8

3 39 3 39 4 27 1517.2 1514.8 1552.5

3 39 6 39 6 39 NC NC 1050.3

3 39 6 39 4 27 NC NC 1265.0

3 39 4 27 4 27 1597.9 1433.0 1355.6

6 39 6 39 6 39 3308.0 3286.3 1293.4

6 39 6 39 4 27 2693.5 2684.3 2790.4

6 39 4 27 4 27 1554.4 1550.3 1029.2

4 27 4 27 4 27 1700.6 1692.3 1173.3
BIC: Bayesian Information Criterion. Lower values indicate better model fit. 
NC: No convergence of the estimation procedure. 

The results in Table 2 prove the feasibility of the method. Most DGPs can be estimated, although the 
estimation process may be slow as a consequence of convergence problems. This is not surprising, since 
the selection step involves the estimation of two types of Johnson distribution and the algorithm may 
alternate between local optima of the likelihood function as a result of jumps between the Johnson types. 
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This is especially likely when the true parameters are close to the lognormal distribution, which can be 
approximated by the neighbouring SU and SB distributions. 

Comparing the fit of the FMMs, it is no surprise that the Johnson mixture is not better than either the 
mix of normal or gamma distributions when the DGP is in fact based on these distributions. However, 
for DGPs that are a mix of different distributions that cannot be well approximated by either normals 
or gammas, the fit of the Johnson FMM is usually (but not always) at least as good and often substan-
tially better than the standard models. This is illustrated in Figure 2 for the case of three F distributions 
(shaded in Table 2). 

 

The observation that the Johnson FMM only outperforms standard mixture models when the DGP is in 
fact not normal, gamma or another standard distribution (a fact that is obviously unknown to the re-
searcher) naturally leads to the idea to consider the standard FMMs as restrictions on a more general 
model (Johnson). Since many common distributions are special cases of the Johnson and Pearson fami-
lies, a model fitted with any of these distributions may be compared against the ‘general’ or ‘unre-
stricted’ Johnson FMM using the likelihood ratio (LR) test. While the test statistic is not asymptotically 
Chi-square distributed in the case of non-nested hypotheses (as is the case here), it may still be used as 
a model selection criterion. In the example discussed above LR = 278.4, which would lead to strongly 
reject the restriction imposed by the gamma FMM against the more general Johnson model (the 
‘Χ²’ - value would be evaluated with six ((4 - 2) x 3) degrees of freedom, since each gamma component 
has two parameters while each Johnson has four. 

Figure 2 Data histogram and fitted gamma (green) and Johnson (blue) distributions 
DGP: 3x (β1 = 4, β2 = 51) 



WORKING PAPER 14-17 

12 

5. Conclusion 

This paper introduces a method that extends the finite mixture model (FMM) to account for unobserved 
heterogeneity in distribution. FFMs have become popular in economics and many other fields of applied 
research to model heterogeneity in subject characteristics that are not observed in the data set and so 
cannot be controlled for. The model is typically used to model micro data where the units of observation 
are persons, firms or other individuals that differ systematically from each other in unknown ways in 
such a way that they effectively belong to groups or sub-populations. The current standard practice in 
FMM modelling consists of selecting the number of groups (usually labelled ‘components’) and of 
choosing a probability distribution for the component densities. The number of groups is usually deter-
mined by trial and error or based on a goodness-of-fit criterion, while the choice of the component dis-
tributions is typically based on a priori considerations regarding the support and the anticipated shape 
of the population distribution. A drawback of this approach is that it places a priori restrictions on the 
nature of the unobserved heterogeneity in at least two ways. First, the choice of the distribution is in 
general somewhat arbitrary and as a rule not tested against a more general (unrestricted) alternative. 
Second, while the ‘true’ number of latent classes is in principle unknown, it is also routinely assumed 
that the mixed distributions are of one kind. That is, the mixed components only differ from each other 
in terms of the parameters of the chosen distribution but not in terms of the probability density functions 
themselves. 

The method proposed in this paper addresses these problems by lifting some of these implicit assump-
tions. This is achieved by postulating a flexible form for the component distributions. Several such flex-
ible forms have been proposed and studied long ago, such as the Pearson and Johnson families, among 
others. Both families share the property that they can assume a wide variety of shapes depending on 
the value of their four parameters. In fact, most commonly used distributions are special cases of both 
families. The paper outlines an algorithm that can be used to estimate the parameters of a mixture of 
Johnson distributions and provides a proof of principle that the method is feasible and a potential im-
provement over current latent class modelling practice. 

The method has been tested using data generated from different distributions, chosen to cover a wide 
range of combinations of skewness and kurtosis. The first results are encouraging. The method gener-
ally converges in about the same number of iterations as standard models that mix normal or gamma 
distributions. More importantly, when the data are generated from mixed distributions that differ sub-
stantially from the standard assumptions (identical component densities and ‘regular’ skewness and 
kurtosis values), the mixture of Johnson distributions generally fits the data better than the standard 
models. 

Several steps still need to be taken to turn the method into a fully operational research tool. First, the 
model needs to be tested for mixtures of regression models, which are the main application in applied 
economics research and many other fields. Second, convergence problems related to the numerical op-
timization routines remain to be addressed. Third, the model needs to be tested with real-world data 
sets, ideally data that have been analysed with the standard FMM approach and with the results pub-
lished in the academic literature. Finally, if the method passes all these tests, it should be made available 
to the research community as (part of) a statistical package.   
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